
Oracle Database 10g: Develop
PL/SQL Program Units

Volume 2 • Student Guide

D17169GC21

Edition 2.1

December 2006

D48231

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle
Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

Authors
Tulika Srivastava
Glenn Stokol

Technical Contributors
and Reviewers
Chaitanya Koratamaddi
Dr. Christoph Burandt
Zarko Cesljas
Yanti Chang
Kathryn Cunningham
Burt Demchick
Laurent Dereac
Peter Driver
Bryan Roberts
Bryn Llewellyn
Nancy Greenberg
Craig Hollister
Thomas Hoogerwerf
Taj-Ul Islam
Inger Joergensen
Eric Lee
Malika Marghadi
Hildegard Mayr
Nagavalli Pataballa
Sunitha Patel
Srinivas Putrevu
Denis Raphaely
Helen Robertson
Grant Spencer
Glenn Stokol
Tone Thomas
Priya Vennapusa
Lex Van Der Werff

Graphic Designer

Satish Bettegowda

Editors

Nita Pavitran
Richard Wallis

Publisher

Sheryl Domingue

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 iii

Contents

Preface

I Introduction
Lesson Objectives I-2
Course Objectives I-3
Course Agenda I-4
Human Resources (HR) Schema I-7
Creating a Modularized and Layered Subprogram Design I-8
Modularizing Development with PL/SQL Blocks I-9
Review of Anonymous Blocks I-10
Introduction to PL/SQL Procedures I-11
Introduction to PL/SQL Functions I-12
Introduction to PL/SQL Packages I-13
Introduction to PL/SQL Triggers I-14
PL/SQL Execution Environment I-15
PL/SQL Development Environments I-16
Coding PL/SQL in iSQL*Plus I-17
Coding PL/SQL in SQL*Plus I-18
Coding PL/SQL in Oracle JDeveloper I-19
Summary I-20
Practice I: Overview I-21

1 Creating Stored Procedures
Objectives 1-2
What Is a Procedure? 1-3
Syntax for Creating Procedures 1-4
Developing Procedures 1-5
What Are Parameters? 1-6
Formal and Actual Parameters 1-7
Procedural Parameter Modes 1-8
Using IN Parameters: Example 1-9
Using OUT Parameters: Example 1-10
Viewing OUT Parameters with iSQL*Plus 1-11
Calling PL/SQL Using Host Variables 1-12
Using IN OUT Parameters: Example 1-13

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 iv

Syntax for Passing Parameters 1-14
Parameter Passing: Examples 1-15
Using the DEFAULT Option for Parameters 1-16
Summary of Parameter Modes 1-18
Invoking Procedures 1-19
Handled Exceptions 1-20
Handled Exceptions: Example 1-21
Exceptions Not Handled 1-22
Exceptions Not Handled: Example 1-23
Removing Procedures 1-24
Viewing Procedures in the Data Dictionary 1-25
Benefits of Subprograms 1-26
Summary 1-27
Practice 1: Overview 1-29

2 Creating Stored Functions
Objectives 2-2
Overview of Stored Functions 2-3
Syntax for Creating Functions 2-4
Developing Functions 2-5
Stored Function: Example 2-6
Ways to Execute Functions 2-7
Advantages of User-Defined Functions in SQL Statements 2-8
Function in SQL Expressions: Example 2-9
Locations to Call User-Defined Functions 2-10
Restrictions on Calling Functions from SQL Expressions 2-11
Controlling Side Effects When Calling Functions from SQL Expressions 2-12
Restrictions on Calling Functions from SQL: Example 2-13
Removing Functions 2-14
Viewing Functions in the Data Dictionary 2-15
Procedures Versus Functions 2-16
Summary 2-17
Practice 2: Overview 2-18

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 v

3 Creating Packages
Objectives 3-2
PL/SQL Packages: Overview 3-3
Components of a PL/SQL Package 3-4
Visibility of Package Components 3-5
Developing PL/SQL Packages 3-6
Creating the Package Specification 3-7
Example of Package Specification: comm_pkg 3-8
Creating the Package Body 3-9
Example of Package Body: comm_pkg 3-10
Invoking Package Subprograms 3-11
Creating and Using Bodiless Packages 3-12
Removing Packages 3-13
Viewing Packages in the Data Dictionary 3-14
Guidelines for Writing Packages 3-15
Advantages of Using Packages 3-16
Summary 3-18
Practice 3: Overview 3-20

4 Using More Package Concepts
Objectives 4-2
Overloading Subprograms 4-3
Overloading: Example 4-5
Overloading and the STANDARD Package 4-7
Using Forward Declarations 4-8
Package Initialization Block 4-10
Using Package Functions in SQL and Restrictions 4-11
Package Function in SQL: Example 4-12
Persistent State of Packages 4-13
Persistent State of Package Variables: Example 4-14
Persistent State of a Package Cursor 4-15
Executing CURS_PKG 4-16
Using PL/SQL Tables of Records in Packages 4-17
PL/SQL Wrapper 4-18
Running the Wrapper 4-19
Results of Wrapping 4-20
Guidelines for Wrapping 4-21
Summary 4-22
Practice 4: Overview 4-23

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 vi

5 Using Oracle-Supplied Packages in Application Development
Objectives 5-2
Using Oracle-Supplied Packages 5-3
List of Some Oracle-Supplied Packages 5-4
How the DBMS_OUTPUT Package Works 5-5
Interacting with Operating System Files 5-6
File Processing Using the UTL_FILE Package 5-7
Exceptions in the UTL_FILE Package 5-8
FOPEN and IS_OPEN Function Parameters 5-9
Using UTL_FILE: Example 5-10
Generating Web Pages with the HTP Package 5-12
Using the HTP Package Procedures 5-13
Creating an HTML File with iSQL*Plus 5-14
Using UTL_MAIL 5-15
Installing and Using UTL_MAIL 5-16
Sending E-Mail with a Binary Attachment 5-17
Sending E-Mail with a Text Attachment 5-19
DBMS_SCHEDULER Package 5-21
Creating a Job 5-23
Creating a Job with In-Line Parameters 5-24
Creating a Job Using a Program 5-25
Creating a Job for a Program with Arguments 5-26
Creating a Job Using a Schedule 5-27
Setting the Repeat Interval for a Job 5-28
Creating a Job Using a Named Program and Schedule 5-29
Managing Jobs 5-30
Data Dictionary Views 5-31
Summary 5-32
Practice 5: Overview 5-33

6 Dynamic SQL and Metadata
Objectives 6-2
Execution Flow of SQL 6-3
Dynamic SQL 6-4
Native Dynamic SQL 6-5
Using the EXECUTE IMMEDIATE Statement 6-6
Dynamic SQL with a DDL Statement 6-7
Dynamic SQL with DML Statements 6-8
Dynamic SQL with a Single-Row Query 6-9
Dynamic SQL with a Multirow Query 6-10

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 vii

Declaring Cursor Variables 6-11
Dynamically Executing a PL/SQL Block 6-12
Using Native Dynamic SQL to Compile PL/SQL Code 6-13
Using the DBMS_SQL Package 6-14
Using DBMS_SQL with a DML Statement 6-15
Using DBMS_SQL with a Parameterized DML Statement 6-16
Comparison of Native Dynamic SQL and the DBMS_SQL Package 6-17
DBMS_METADATA Package 6-18
Metadata API 6-19
Subprograms in DBMS_METADATA 6-20
FETCH_xxx Subprograms 6-21
SET_FILTER Procedure 6-22
Filters 6-23
Examples of Setting Filters 6-24
Programmatic Use: Example 1 6-25
Programmatic Use: Example 2 6-27
Browsing APIs 6-29
Browsing APIs: Examples 6-30
Summary 6-32
Practice 6: Overview 6-33

7 Design Considerations for PL/SQL Code
Objectives 7-2
Standardizing Constants and Exceptions 7-3
Standardizing Exceptions 7-4
Standardizing Exception Handling 7-5
Standardizing Constants 7-6
Local Subprograms 7-7
Definer’s Rights Versus Invoker’s Rights 7-8
Specifying Invoker’s Rights 7-9
Autonomous Transactions 7-10
Features of Autonomous Transactions 7-11
Using Autonomous Transactions 7-12
RETURNING Clause 7-13
Bulk Binding 7-14
Using Bulk Binding 7-15
Bulk Binding FORALL: Example 7-16
Using BULK COLLECT INTO with Queries 7-18
Using BULK COLLECT INTO with Cursors 7-19
Using BULK COLLECT INTO with a RETURNING Clause 7-20

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 viii

Using the NOCOPY Hint 7-21
Effects of the NOCOPY Hint 7-22
NOCOPY Hint Can Be Ignored 7-23
PARALLEL_ENABLE Hint 7-24
Summary 7-25
Practice 7: Overview 7-26

8 Managing Dependencies
Objectives 8-2
Understanding Dependencies 8-3
Dependencies 8-4
Local Dependencies 8-5
A Scenario of Local Dependencies 8-7
Displaying Direct Dependencies by Using USER_DEPENDENCIES 8-8
Displaying Direct and Indirect Dependencies 8-9
Displaying Dependencies 8-10
Another Scenario of Local Dependencies 8-11
A Scenario of Local Naming Dependencies 8-12
Understanding Remote Dependencies 8-13
Concepts of Remote Dependencies 8-15
REMOTE_DEPENDENCIES_MODE Parameter 8-16
Remote Dependencies and Time Stamp Mode 8-17
Remote Procedure B Compiles at 8:00 a.m. 8-19
Local Procedure A Compiles at 9:00 a.m. 8-20
Execute Procedure A 8-21
Remote Procedure B Recompiled at 11:00 a.m. 8-22
Execute Procedure A 8-23
Signature Mode 8-24
Recompiling a PL/SQL Program Unit 8-25
Unsuccessful Recompilation 8-26
Successful Recompilation 8-27
Recompilation of Procedures 8-28
Packages and Dependencies 8-29
Summary 8-31
Practice 8: Overview 8-32

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 ix

9 Manipulating Large Objects
Objectives 9-2
What Is a LOB? 9-3
Contrasting LONG and LOB Data Types 9-5
Anatomy of a LOB 9-6
Internal LOBs 9-7
Managing Internal LOBs 9-8
What Are BFILEs? 9-9
Securing BFILEs 9-10
A New Database Object: DIRECTORY 9-11
Guidelines for Creating DIRECTORY Objects 9-12
Managing BFILEs 9-13
Preparing to Use BFILEs 9-14
Populating BFILE Columns with SQL 9-15
Populating a BFILE Column with PL/SQL 9-16
Using DBMS_LOB Routines with BFILEs 9-17
Migrating from LONG to LOB 9-18
DBMS_LOB Package 9-20
DBMS_LOB.READ and DBMS_LOB.WRITE 9-23
Initializing LOB Columns Added to a Table 9-24
Populating LOB Columns 9-25
Updating LOB by Using DBMS_LOB in PL/SQL 9-26
Selecting CLOB Values by Using SQL 9-27
Selecting CLOB Values by Using DBMS_LOB 9-28
Selecting CLOB Values in PL/SQL 9-29
Removing LOBs 9-30
Temporary LOBs 9-31
Creating a Temporary LOB 9-32
Summary 9-33
Practice 9: Overview 9-34

10 Creating Triggers
Objectives 10-2
Types of Triggers 10-3
Guidelines for Designing Triggers 10-4
Creating DML Triggers 10-5
Types of DML Triggers 10-6
Trigger Timing 10-7
Trigger-Firing Sequence 10-8

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 x

Trigger Event Types and Body 10-10
Creating a DML Statement Trigger 10-11
Testing SECURE_EMP 10-12
Using Conditional Predicates 10-13
Creating a DML Row Trigger 10-14
Using OLD and NEW Qualifiers 10-15
Using OLD and NEW Qualifiers: Example Using AUDIT_EMP 10-16
Restricting a Row Trigger: Example 10-17
Summary of the Trigger Execution Model 10-18
Implementing an Integrity Constraint with a Trigger 10-19
INSTEAD OF Triggers 10-20
Creating an INSTEAD OF Trigger 10-21
Comparison of Database Triggers and Stored Procedures 10-24
Comparison of Database Triggers and Oracle Forms Triggers 10-25
Managing Triggers 10-26
Removing Triggers 10-27
Testing Triggers 10-28
Summary 10-29
Practice 10: Overview 10-30

11 Applications for Triggers
Objectives 11-2
Creating Database Triggers 11-3
Creating Triggers on DDL Statements 11-4
Creating Triggers on System Events 11-5
LOGON and LOGOFF Triggers: Example 11-6
CALL Statements 11-7
Reading Data from a Mutating Table 11-8
Mutating Table: Example 11-9
Benefits of Database Triggers 11-11
Managing Triggers 11-12
Business Application Scenarios for Implementing Triggers 11-13
Viewing Trigger Information 11-14
Using USER_TRIGGERS 11-15
Listing the Code of Triggers 11-16
Summary 11-17
Practice 11: Overview 11-18

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 xi

12 Understanding and Influencing the PL/SQL Compiler
Objectives 12-2
Native and Interpreted Compilation 12-3
Features and Benefits of Native Compilation 12-4
Considerations When Using Native Compilation 12-5
Parameters Influencing Compilation 12-6
Switching Between Native and Interpreted Compilation 12-7
Viewing Compilation Information in the Data Dictionary 12-8
Using Native Compilation 12-9
Compiler Warning Infrastructure 12-10
Setting Compiler Warning Levels 12-11
Guidelines for Using PLSQL_WARNINGS 12-12
DBMS_WARNING Package 12-13
Using DBMS_WARNING Procedures 12-14
Using DBMS_WARNING Functions 12-15
Using DBMS_WARNING: Example 12-16
Summary 12-18
Practice 12: Overview 12-19

Appendix A: Practice Solutions
Appendix B: Table Descriptions and Data
Appendix C: Studies for Implementing Triggers
Appendix D: Review of PL/SQL
Appendix E: JDeveloper
Appendix F: Using SQL Developer
Index

Additional Practices
Additional Practice: Solutions
Additional Practices: Table Descriptions and Data

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface-3

Profile

Before You Begin This Course
Before you begin this course, you should have thorough knowledge of SQL and iSQL*Plus, as
well as working experience in developing applications. Prerequisites are any of the following
Oracle University courses or combinations of courses:

• Oracle Database 10g: Introduction to SQL
• Oracle Database 10g: SQL Fundamentals I and Oracle Database 10g: SQL

Fundamentals II
• Oracle Database 10g: SQL and PL/SQL Fundamentals
• Oracle Database 10g: PL/SQL Fundamentals

How This Course Is Organized
Oracle Database 10g: Develop PL/SQL Program Units is an instructor-led course featuring
lectures and hands-on exercises. Online demonstrations and practice sessions reinforce the
concepts and skills that are introduced.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface-4

Related Publications

Oracle Publications
Title Part Number
Oracle Database Application Developer’s Guide – Fundamentals B10795-01
(10g Release 1)
Oracle Database Application Developer’s Guide – Large Objects B10796-01
(10g Release 1)
PL/SQL Packages and Types Reference (10g Release 1) B10802-01
PL/SQL User’s Guide and Reference (10g Release 1) B10807-01

Additional Publications
• System release bulletins
• Installation and user’s guides
• Read-me files
• International Oracle Users Group (IOUG) articles
• Oracle Magazine

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface-5

Typographic Conventions

Typographic Conventions in Text

Convention Element Example

Bold Emphasized words and phrases
in Web content only

To navigate within this application, do
not click the Back and Forward buttons.

Bold italic

Glossary terms (if there is a
glossary)

The algorithm inserts the new key.

Brackets

Key names

Press [Enter].

Caps and
lowercase

Buttons,
check boxes,
triggers,
windows

Click the Executable button.
Select the Registration Required check
box.
Assign a When-Validate-Item trigger.
Open the Master Schedule window.

Carets

Menu paths

Select File > Save.

Commas

Key sequences

Press and release these keys one at a
time:
[Alt], [F], [D]

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface-6

Typographic Conventions (continued)

Typographic Conventions in Text (continued)

Convention Object or Term Example

Courier New,
case sensitive

Code output,
SQL and PL/SQL
code elements, Java
code elements,
directory names,
filenames,
passwords,
pathnames, URLs,
user input,
usernames

Code output: debug.seti (‘I’,300);

SQL code elements: Use the SELECT command to view
information stored in the last_name column of the emp
table.
Java code elements: Java programming involves the
String and StringBuffer classes.

Directory names: bin (DOS), $FMHOME (UNIX)

File names: Locate the init.ora file.

Passwords: Use tiger as your password.

Path names: Open c:\my_docs\projects.

URLs: Go to http://www.oracle.com.

User input: Enter 300.

Usernames: Log on as scott.

Initial cap Graphics labels
(unless the term is a
proper noun)

Customer address (but Oracle Payables)

Italic Emphasized words
and phrases in print
publications, titles
of books and
courses, variables

Do not save changes to the database.
For further information, see Oracle7 Server SQL
Language Reference Manual.
Enter user_id@us.oracle.com, where user_id is
the name of the user.

Plus signs Key combinations Press and hold these keys simultaneously:
[Control] + [Alt] + [Delete]

Quotation
marks

Lesson and chapter
titles in cross
references, interface
elements with long
names that have
only initial caps

This subject is covered in Unit II, Lesson 3, “Working
with Objects.”

Select the “Include a reusable module component” and
click Finish.

Use the “WHERE clause of query” property.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface-7

Typographic Conventions (continued)

Typographic Conventions in Navigation Paths
This course uses simplified navigation paths to direct you through Oracle applications, as in
the following example.
Invoice Batch Summary
(N) Invoice > Entry > Invoice Batches Summary (M) Query > Find (B) Approve
This simplified path translates to the following sequence of steps:

1. (N) From the Navigator window, select Invoice > Entry > Invoice Batches Summary.
2. (M) From the menu, select Query > Find.
3. (B) Click the Approve button.

Notation:
(N) = Navigator (I) = icon
(M) = menu (H) = hyperlink
(T) = tab (B) = button

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Creating Triggers

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the different types of triggers
• Describe database triggers and their uses
• Create database triggers
• Describe database trigger-firing rules
• Remove database triggers

Lesson Aim
In this lesson, you learn how to create and use database triggers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-3

Copyright © 2006, Oracle. All rights reserved.

Types of Triggers

A trigger:
• Is a PL/SQL block or a PL/SQL procedure

associated with a table, view, schema, or database
• Executes implicitly whenever a particular event

takes place
• Can be either of the following:

– Application trigger: Fires whenever an event occurs
with a particular application

– Database trigger: Fires whenever a data event (such
as DML) or system event (such as logon or
shutdown) occurs on a schema or database

Types of Triggers
Application triggers execute implicitly whenever a particular data manipulation language
(DML) event occurs within an application. An example of an application that uses triggers
extensively is an application developed with Oracle Forms Developer.
Database triggers execute implicitly when any of the following events occur:

• DML operations on a table
• DML operations on a view, with an INSTEAD OF trigger
• DDL statements, such as CREATE and ALTER

This is the case no matter which user is connected or which application is used. Database
triggers also execute implicitly when some user actions or database system actions occur
(for example, when a user logs on or the DBA shuts down the database).
Note: Database triggers can be defined on tables and on views. If a DML operation is
issued on a view, then the INSTEAD OF trigger defines what actions take place. If these
actions include DML operations on tables, then any triggers on the base tables are fired.
Database triggers can be system triggers on a database or a schema. For databases, triggers
fire for each event for all users; for a schema, they fire for each event for that specific user.
This course explains how to create database triggers. Creating database triggers based on
system events is discussed in the lesson titled “Applications for Triggers.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-4

Copyright © 2006, Oracle. All rights reserved.

Guidelines for Designing Triggers

• You can design triggers to:
– Perform related actions
– Centralize global operations

• You must not design triggers:
– Where functionality is already built into the Oracle

server
– That duplicate other triggers

• You can create stored procedures and invoke
them in a trigger, if the PL/SQL code is very
lengthy.

• The excessive use of triggers can result in
complex interdependencies, which may be difficult
to maintain in large applications.

Guidelines for Designing Triggers
• Use triggers to guarantee that related actions are performed for a specific operation.
• Use database triggers for centralized, global operations that should be fired for the

triggering statement, independent of the user or application issuing the statement.
• Do not define triggers to duplicate or replace the functionality already built into the

Oracle database. For example, implement integrity rules using declarative
constraints, not triggers. To remember the design order for a business rule:

- Use built-in constraints in the Oracle server, such as primary key, and so on.
- Develop a database trigger or an application, such as a servlet or Enterprise

JavaBeans (EJB) on your middle tier.
- Use a presentation interface, such as Oracle Forms, HTML, JavaServer Pages

(JSP) and so on, for data presentation rules.
• Excessive use of triggers can result in complex interdependencies, which may be

difficult to maintain. Use triggers when necessary, and be aware of recursive and
cascading effects.

• Avoid lengthy trigger logic by creating stored procedures or packaged procedures
that are invoked in the trigger body.

• Database triggers fire for every user each time the event occurs on the trigger that is
created.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-5

Copyright © 2006, Oracle. All rights reserved.

Creating DML Triggers

Create DML statement or row type triggers by using:

• A statement trigger fires once for a DML
statement.

• A row trigger fires once for each row affected.
Note: Trigger names must be unique with respect to
other triggers in the same schema.

CREATE [OR REPLACE] TRIGGER trigger_name
timing
event1 [OR event2 OR event3]
ON object_name
[[REFERENCING OLD AS old | NEW AS new]
FOR EACH ROW
[WHEN (condition)]]
trigger_body

Creating DML Triggers
The components of the trigger syntax are:
• trigger_name uniquely identifies the trigger.
• timing indicates when the trigger fires in relation to the triggering event. Values

are BEFORE, AFTER, and INSTEAD OF.
• event identifies the DML operation causing the trigger to fire.

Values are INSERT, UPDATE [OF column], and DELETE.
• object_name indicates the table or view associated with the trigger.
• For row triggers, you can specify:

- A REFERENCING clause to choose correlation names for referencing the old
and new values of the current row (default values are OLD and NEW)

- FOR EACH ROW to designate that the trigger is a row trigger
- A WHEN clause to apply a conditional predicate, in parentheses, which is

evaluated for each row to determine whether or not to execute the trigger body
• The trigger_body is the action performed by the trigger, implemented as either of the

following:
- An anonymous block with a DECLARE or BEGIN, and an END
- A CALL clause to invoke a stand-alone or packaged stored procedure, such as:

CALL my_procedure;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-6

Copyright © 2006, Oracle. All rights reserved.

Types of DML Triggers

The trigger type determines whether the body
executes for each row or only once for the triggering
statement.
• A statement trigger:

– Executes once for the triggering event
– Is the default type of trigger
– Fires once even if no rows are affected at all

• A row trigger:
– Executes once for each row affected by the

triggering event
– Is not executed if the triggering event does not

affect any rows
– Is indicated by specifying the FOR EACH ROW clause

Types of DML Triggers
You can specify that the trigger will be executed once for every row affected by the
triggering statement (such as a multiple row UPDATE) or once for the triggering statement,
no matter how many rows it affects.
Statement Trigger
A statement trigger is fired once on behalf of the triggering event, even if no rows are
affected at all. Statement triggers are useful if the trigger action does not depend on the
data from rows that are affected or on data provided by the triggering event itself (for
example, a trigger that performs a complex security check on the current user).
Row Trigger
A row trigger fires each time the table is affected by the triggering event. If the triggering
event affects no rows, a row trigger is not executed. Row triggers are useful if the trigger
action depends on data of rows that are affected or on data provided by the triggering
event itself.
Note: Row triggers use correlation names to access the old and new column values of the
row being processed by the trigger.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-7

Copyright © 2006, Oracle. All rights reserved.

Trigger Timing

When should the trigger fire?
• BEFORE: Execute the trigger body before the

triggering DML event on a table.
• AFTER: Execute the trigger body after the

triggering DML event on a table.
• INSTEAD OF: Execute the trigger body instead of

the triggering statement. This is used for views
that are not otherwise modifiable.

Note: If multiple triggers are defined for the same
object, then the order of firing triggers is arbitrary.

Trigger Timing
The BEFORE trigger timing is frequently used in the following situations:

• To determine whether the triggering statement should be allowed to complete (This
eliminates unnecessary processing and enables a rollback in cases where an
exception is raised in the triggering action.)

• To derive column values before completing an INSERT or UPDATE statement
• To initialize global variables or flags, and to validate complex business rules

The AFTER triggers are frequently used in the following situations:
• To complete the triggering statement before executing the triggering action
• To perform different actions on the same triggering statement if a BEFORE trigger is

already present
The INSTEAD OF triggers provide a transparent way of modifying views that cannot be
modified directly through SQL DML statements because a view is not always modifiable.
You can write appropriate DML statements inside the body of an INSTEAD OF trigger to
perform actions directly on the underlying tables of views.
Note: If multiple triggers are defined for a table, then the order in which multiple triggers
of the same type fire is arbitrary. To ensure that triggers of the same type are fired in a
particular order, consolidate the triggers into one trigger that calls separate procedures in
the desired order.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-8

Copyright © 2006, Oracle. All rights reserved.

…

Trigger-Firing Sequence

Use the following firing sequence for a trigger on a
table when a single row is manipulated:

BEFORE statement
trigger

BEFORE row trigger
AFTER row trigger

AFTER statement trigger

DML statement
INSERT INTO departments

(department_id,department_name, location_id)
VALUES (400, 'CONSULTING', 2400);

Triggering action

Trigger-Firing Sequence
Create a statement trigger or a row trigger based on the requirement that the trigger must
fire once for each row affected by the triggering statement, or just once for the triggering
statement, regardless of the number of rows affected.
When the triggering DML statement affects a single row, both the statement trigger and
the row trigger fire exactly once.
Example
The SQL statement in the slide does not differentiate statement triggers from row triggers
because exactly one row is inserted into the table using the syntax for the INSERT
statement shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-9

Copyright © 2006, Oracle. All rights reserved.

UPDATE employees
SET salary = salary * 1.1
WHERE department_id = 30;

Trigger-Firing Sequence

Use the following firing sequence for a trigger on a
table when many rows are manipulated:

BEFORE statement trigger

BEFORE row trigger
AFTER row trigger...
BEFORE row trigger
AFTER row trigger...

AFTER statement trigger

Trigger-Firing Sequence (continued)
When the triggering DML statement affects many rows, the statement trigger fires exactly
once, and the row trigger fires once for every row affected by the statement.
Example
The SQL statement in the slide causes a row-level trigger to fire a number of times equal
to the number of rows that satisfy the WHERE clause (that is, the number of employees
reporting to department 30).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-10

Copyright © 2006, Oracle. All rights reserved.

Trigger Event Types and Body

A trigger event:
• Determines which DML statement causes the

trigger to execute
• Types are:

– INSERT

– UPDATE [OF column]

– DELETE

A trigger body:
• Determines what action is performed
• Is a PL/SQL block or a CALL to a procedure

Triggering Event Types
The triggering event or statement can be an INSERT, UPDATE, or DELETE statement on
a table.

• When the triggering event is an UPDATE statement, you can include a column list to
identify which columns must be changed to fire the trigger. You cannot specify a
column list for an INSERT or for a DELETE statement because it always affects
entire rows.

. . . UPDATE OF salary . . .

• The triggering event can contain one, two, or all three of these DML operations.
. . . INSERT or UPDATE or DELETE
. . . INSERT or UPDATE OF job_id . . .

The trigger body defines the action—that is, what needs to be done when the triggering
event is issued. The PL/SQL block can contain SQL and PL/SQL statements, and can
define PL/SQL constructs such as variables, cursors, exceptions, and so on. You can also
call a PL/SQL procedure or a Java procedure.
Note: The size of a trigger cannot be greater than 32 KB.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-11

Copyright © 2006, Oracle. All rights reserved.

Application

INSERT INTO EMPLOYEES...;
EMPLOYEES table

SECURE_EMP trigger

Creating a DML Statement Trigger

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT ON employees BEGIN
IF (TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR

(TO_CHAR(SYSDATE,'HH24:MI')
NOT BETWEEN '08:00' AND '18:00') THEN

RAISE_APPLICATION_ERROR(-20500, 'You may insert'
||' into EMPLOYEES table only during '
||' business hours.');

END IF;
END;

Creating a DML Statement Trigger
In this example, the SECURE_EMP database trigger is a BEFORE statement trigger that
prevents the INSERT operation from succeeding if the business condition is violated. In
this case, the trigger restricts inserts into the EMPLOYEES table during certain business
hours, Monday through Friday.
If a user attempts to insert a row into the EMPLOYEES table on Saturday, then the user
sees an error message, the trigger fails, and the triggering statement is rolled back.
Remember that the RAISE_APPLICATION_ERROR is a server-side built-in procedure
that returns an error to the user and causes the PL/SQL block to fail.
When a database trigger fails, the triggering statement is automatically rolled back by the
Oracle server

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-12

Copyright © 2006, Oracle. All rights reserved.

Testing SECURE_EMP

INSERT INTO employees (employee_id, last_name,
first_name, email, hire_date,
job_id, salary, department_id)

VALUES (300, 'Smith', 'Rob', 'RSMITH', SYSDATE,
'IT_PROG', 4500, 60);

Testing SECURE_EMP
Insert a row into the EMPLOYEES table during nonbusiness hours. When the date and time
are out of the business timings specified in the trigger, you receive the error message
shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-13

Copyright © 2006, Oracle. All rights reserved.

Using Conditional Predicates

CREATE OR REPLACE TRIGGER secure_emp BEFORE
INSERT OR UPDATE OR DELETE ON employees BEGIN
IF (TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR
(TO_CHAR(SYSDATE,'HH24')

NOT BETWEEN '08' AND '18') THEN
IF DELETING THEN RAISE_APPLICATION_ERROR(
-20502,'You may delete from EMPLOYEES table'||

'only during business hours.');
ELSIF INSERTING THEN RAISE_APPLICATION_ERROR(
-20500,'You may insert into EMPLOYEES table'||

'only during business hours.');
ELSIF UPDATING('SALARY') THEN
RAISE_APPLICATION_ERROR(-20503, 'You may '||
'update SALARY only during business hours.');

ELSE RAISE_APPLICATION_ERROR(-20504,'You may'||
' update EMPLOYEES table only during'||
' normal hours.');

END IF;
END IF;
END;

Combining Triggering Events
You can combine several triggering events into one by taking advantage of the special
conditional predicates INSERTING, UPDATING, and DELETING within the trigger
body.
Example
Create one trigger to restrict all data manipulation events on the EMPLOYEES table to
certain business hours, Monday through Friday.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-14

Copyright © 2006, Oracle. All rights reserved.

Creating a DML Row Trigger

CREATE OR REPLACE TRIGGER restrict_salary
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
BEGIN
IF NOT (:NEW.job_id IN ('AD_PRES', 'AD_VP'))

AND :NEW.salary > 15000 THEN
RAISE_APPLICATION_ERROR (-20202,
'Employee cannot earn more than $15,000.');

END IF;
END;
/

Creating a DML Row Trigger
You can create a BEFORE row trigger in order to prevent the triggering operation from
succeeding if a certain condition is violated.
In the example, a trigger is created to allow certain employees to be able to earn a salary of
more than 15,000. Suppose that a user attempts to execute the following UPDATE
statement:

UPDATE employees
SET salary = 15500
WHERE last_name = 'Russell';

The trigger raises the following exception:
UPDATE EMPLOYEES

*
ERROR at line 1:
ORA-20202: Employee cannot earn more than $15,000.
ORA-06512: at "PLSQL.RESTRICT_SALARY", line 5
ORA-04088: error during execution of trigger
"PLSQL.RESTRICT_SALARY"

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-15

Copyright © 2006, Oracle. All rights reserved.

Using OLD and NEW Qualifiers

CREATE OR REPLACE TRIGGER audit_emp_values

AFTER DELETE OR INSERT OR UPDATE ON employees

FOR EACH ROW

BEGIN

INSERT INTO audit_emp(user_name, time_stamp, id,

old_last_name, new_last_name, old_title,

new_title, old_salary, new_salary)

VALUES (USER, SYSDATE, :OLD.employee_id,

:OLD.last_name, :NEW.last_name, :OLD.job_id,

:NEW.job_id, :OLD.salary, :NEW.salary);

END;

/

Using OLD and NEW Qualifiers
Within a ROW trigger, reference the value of a column before and after the data change by
prefixing it with the OLD and NEW qualifiers.

Usage notes:
• The OLD and NEW qualifiers are available only in ROW triggers.
• Prefix these qualifiers with a colon (:) in every SQL and PL/SQL statement.
• There is no colon (:) prefix if the qualifiers are referenced in the WHEN restricting

condition.
Note: Row triggers can decrease the performance if you perform many updates on larger
tables.

Data Operation Old Value New Value

INSERT NULL Inserted value

UPDATE Value before update Value after update

DELETE Value before delete NULL

O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-16

Copyright © 2006, Oracle. All rights reserved.

Using OLD and NEW Qualifiers:
Example Using AUDIT_EMP

INSERT INTO employees
(employee_id, last_name, job_id, salary, ...)
VALUES (999, 'Temp emp', 'SA_REP', 6000,...);

UPDATE employees
SET salary = 7000, last_name = 'Smith'
WHERE employee_id = 999;

SELECT user_name, timestamp, ...
FROM audit_emp;

Using OLD and NEW Qualifiers: Example Using AUDIT_EMP
Create a trigger on the EMPLOYEES table to add rows to a user table, AUDIT_EMP,
logging a user’s activity against the EMPLOYEES table. The trigger records the values of
several columns both before and after the data changes by using the OLD and NEW
qualifiers with the respective column name.
There is an additional column named COMMENTS in AUDIT_EMP that is not shown in this
slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-17

Copyright © 2006, Oracle. All rights reserved.

Restricting a Row Trigger: Example

CREATE OR REPLACE TRIGGER derive_commission_pct
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.job_id = 'SA_REP')
BEGIN
IF INSERTING THEN
:NEW.commission_pct := 0;

ELSIF :OLD.commission_pct IS NULL THEN
:NEW.commission_pct := 0;

ELSE
:NEW.commission_pct := :OLD.commission_pct+0.05;

END IF;
END;
/

Restricting a Row Trigger: Example
To restrict the trigger action to those rows that satisfy a certain condition, provide a WHEN
clause.
Create a trigger on the EMPLOYEES table to calculate an employee’s commission when a
row is added to the EMPLOYEES table, or when an employee’s salary is modified.
The NEW qualifier cannot be prefixed with a colon in the WHEN clause because the WHEN
clause is outside the PL/SQL blocks.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-18

Copyright © 2006, Oracle. All rights reserved.

Summary of the Trigger Execution Model

1. Execute all BEFORE STATEMENT triggers.
2. Loop for each row affected:

a. Execute all BEFORE ROW triggers.
b. Execute the DML statement and perform integrity

constraint checking.
c. Execute all AFTER ROW triggers.

3. Execute all AFTER STATEMENT triggers.
Note: Integrity checking can be deferred until the
COMMIT operation is performed.

Trigger Execution Model
A single DML statement can potentially fire up to four types of triggers:
• BEFORE and AFTER statement triggers
• BEFORE and AFTER row triggers

A triggering event or a statement within the trigger can cause one or more integrity
constraints to be checked. However, you can defer constraint checking until a COMMIT
operation is performed.
Triggers can also cause other triggers—known as cascading triggers—to fire.
All actions and checks performed as a result of a SQL statement must succeed. If an
exception is raised within a trigger and the exception is not explicitly handled, then all
actions performed because of the original SQL statement are rolled back (including actions
performed by firing triggers). This guarantees that integrity constraints can never be
compromised by triggers.
When a trigger fires, the tables referenced in the trigger action may undergo changes by
other users’ transactions. In all cases, a read-consistent image is guaranteed for the
modified values that the trigger needs to read (query) or write (update).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-19

Copyright © 2006, Oracle. All rights reserved.

Implementing an Integrity Constraint
with a Trigger

CREATE OR REPLACE TRIGGER employee_dept_fk_trg
AFTER UPDATE OF department_id
ON employees FOR EACH ROW
BEGIN
INSERT INTO departments VALUES(:new.department_id,

'Dept '||:new.department_id, NULL, NULL);
EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN
NULL; -- mask exception if department exists

END;
/

UPDATE employees SET department_id = 999
WHERE employee_id = 170;
-- Successful after trigger is fired

UPDATE employees SET department_id = 999
WHERE employee_id = 170;
-- Integrity constraint violation error

Implementing an Integrity Constraint with a Trigger
The example in the slide explains a situation in which the integrity constraint can be taken
care of by using a trigger. The EMPLOYEES table has a foreign key constraint on the
DEPARTMENT_ID column of the DEPARTMENTS table.
In the first SQL statement, the DEPARTMENT_ID of the employee 170 is modified to 999.
Because department 999 does not exist in the DEPARTMENTS table, the statement raises
exception –2292 for the integrity constraint violation.
The EMPLOYEE_DEPT_FK_TRG trigger is created that inserts a new row into the
DEPARTMENTS table, using :NEW.DEPARTMENT_ID for the value of the new
department’s DEPARTMENT_ID. The trigger fires when the UPDATE statement modifies
the DEPARTMENT_ID of employee 170 to 999. When the foreign key constraint is
checked, it is successful because the trigger inserted the department 999 into the
DEPARTMENTS table. Therefore, no exception occurs unless the department already exists
when the trigger attempts to insert the new row. However, the EXCEPTION handler traps
and masks the exception allowing the operation to succeed.
Note: This example works with Oracle8i and later releases but produces a run-time error
in releases prior to Oracle8i.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-20

Copyright © 2006, Oracle. All rights reserved.

INSTEAD OF Triggers

Application

INSERT INTO my_view
. . .;

MY_VIEW

INSTEAD OF trigger
INSERT
TABLE1

UPDATE
TABLE2

INSTEAD OF Triggers
Use INSTEAD OF triggers to modify data in which the DML statement has been issued
against an inherently nonupdatable view. These triggers are called INSTEAD OF triggers
because, unlike other triggers, the Oracle server fires the trigger instead of executing the
triggering statement. These triggers are used to perform INSERT, UPDATE, and DELETE
operations directly on the underlying tables. You can write INSERT, UPDATE, and
DELETE statements against a view, and the INSTEAD OF trigger works invisibly in the
background to make the right actions take place. A view cannot be modified by normal
DML statements if the view query contains set operators, group functions, clauses such as
GROUP BY, CONNECT BY, START, the DISTINCT operator, or joins. For example, if a
view consists of more than one table, an insert to the view may entail an insertion into one
table and an update to another. So you write an INSTEAD OF trigger that fires when you
write an insert against the view. Instead of the original insertion, the trigger body executes,
which results in an insertion of data into one table and an update to another table.
Note: If a view is inherently updatable and has INSTEAD OF triggers, then the triggers
take precedence. INSTEAD OF triggers are row triggers. The CHECK option for views is
not enforced when insertions or updates to the view are performed by using INSTEAD OF
triggers. The INSTEAD OF trigger body must enforce the check.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-21

Copyright © 2006, Oracle. All rights reserved.

Creating an INSTEAD OF Trigger

Perform the INSERT into EMP_DETAILS that is based
on EMPLOYEES and DEPARTMENTS tables:

INSTEAD OF INSERT
into EMP_DETAILS

INSERT into NEW_EMPS UPDATE NEW_DEPTS

……

1

2 3

INSERT INTO emp_details
VALUES (9001,'ABBOTT',3000, 10, 'Administration');

Creating an INSTEAD OF Trigger
You can create an INSTEAD OF trigger in order to maintain the base tables on which a
view is based. The example illustrates an employee being inserted into view
EMP_DETAILS, whose query is based on the EMPLOYEES and DEPARTMENTS tables.
The NEW_EMP_DEPT (INSTEAD OF) trigger executes in place of the INSERT operation
that causes the trigger to fire. The INSTEAD OF trigger then issues the appropriate
INSERT and UPDATE to the base tables used by the EMP_DETAILS view. Therefore,
instead of inserting the new employee record into the EMPLOYEES table, the following
actions take place:

1. The NEW_EMP_DEPT INSTEAD OF trigger fires.
2. A row is inserted into the NEW_EMPS table.
3. The DEPT_SAL column of the NEW_DEPTS table is updated. The salary value

supplied for the new employee is added to the existing total salary of the department
to which the new employee has been assigned.

Note: The code for this scenario is shown in the next few pages.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-22

Copyright © 2006, Oracle. All rights reserved.

Creating an INSTEAD OF Trigger

Use INSTEAD OF to perform DML on complex views:
CREATE TABLE new_emps AS
SELECT employee_id,last_name,salary,department_id
FROM employees;

CREATE TABLE new_depts AS
SELECT d.department_id,d.department_name,

sum(e.salary) dept_sal
FROM employees e, departments d
WHERE e.department_id = d.department_id;

CREATE VIEW emp_details AS
SELECT e.employee_id, e.last_name, e.salary,

e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY d.department_id,d.department_name;

Creating an INSTEAD OF Trigger (continued)
The example creates two new tables, NEW_EMPS and NEW_DEPTS, based on the
EMPLOYEES and DEPARTMENTS tables, respectively. It also creates an EMP_DETAILS
view from the EMPLOYEES and DEPARTMENTS tables.
If a view has a complex query structure, then it is not always possible to perform DML
directly on the view to affect the underlying tables. The example requires creation of an
INSTEAD OF trigger, called NEW_EMP_DEPT, shown on the next page. The
NEW_DEPT_EMP trigger handles DML in the following way:

• When a row is inserted into the EMP_DETAILS view, instead of inserting the row
directly into the view, rows are added into the NEW_EMPS and NEW_DEPTS tables,
using the data values supplied with the INSERT statement.

• When a row is modified or deleted through the EMP_DETAILS view, corresponding
rows in the NEW_EMPS and NEW_DEPTS tables are affected.

Note: INSTEAD OF triggers can be written only for views, and the BEFORE and AFTER
timing options are not valid.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-23

Creating an INSTEAD OF Trigger (continued)
CREATE OR REPLACE TRIGGER new_emp_dept
INSTEAD OF INSERT OR UPDATE OR DELETE ON emp_details
FOR EACH ROW
BEGIN
IF INSERTING THEN

INSERT INTO new_emps
VALUES (:NEW.employee_id, :NEW.last_name,

:NEW.salary, :NEW.department_id);
UPDATE new_depts

SET dept_sal = dept_sal + :NEW.salary
WHERE department_id = :NEW.department_id;

ELSIF DELETING THEN
DELETE FROM new_emps

WHERE employee_id = :OLD.employee_id;
UPDATE new_depts

SET dept_sal = dept_sal - :OLD.salary
WHERE department_id = :OLD.department_id;

ELSIF UPDATING ('salary') THEN
UPDATE new_emps

SET salary = :NEW.salary
WHERE employee_id = :OLD.employee_id;

UPDATE new_depts
SET dept_sal = dept_sal +

(:NEW.salary - :OLD.salary)
WHERE department_id = :OLD.department_id;

ELSIF UPDATING ('department_id') THEN
UPDATE new_emps

SET department_id = :NEW.department_id
WHERE employee_id = :OLD.employee_id;

UPDATE new_depts
SET dept_sal = dept_sal - :OLD.salary
WHERE department_id = :OLD.department_id;

UPDATE new_depts
SET dept_sal = dept_sal + :NEW.salary
WHERE department_id = :NEW.department_id;

END IF;
END;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-24

Copyright © 2006, Oracle. All rights reserved.

Comparison of Database Triggers and
Stored Procedures

Triggers

Defined with CREATE TRIGGER

Data dictionary contains source
code in USER_TRIGGERS.

Implicitly invoked by DML

COMMIT, SAVEPOINT, and
ROLLBACK are not allowed.

Procedures

Defined with CREATE PROCEDURE

Data dictionary contains source
code in USER_SOURCE.

Explicitly invoked

COMMIT, SAVEPOINT, and
ROLLBACK are allowed.

Comparison of Database Triggers and Stored Procedures
There are differences between database triggers and stored procedures:

Triggers are fully compiled when the CREATE TRIGGER command is issued and the
executable code is stored in the data dictionary.
Note: If errors occur during the compilation of a trigger, the trigger is still created.

Database Trigger Stored Procedure

Invoked implicitly Invoked explicitly

COMMIT, ROLLBACK, and
SAVEPOINT statements are not allowed
within the trigger body. It is possible to
commit or roll back indirectly by calling
a procedure, but it is not recommended
because of side effects to transactions.

COMMIT, ROLLBACK, and SAVEPOINT
statements are permitted within the procedure
body.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-25

Copyright © 2006, Oracle. All rights reserved.

Comparison of Database Triggers
and Oracle Forms Triggers

INSERT INTO EMPLOYEES
. . .;

EMPLOYEES table CHECK_SAL trigger

BEFORE
INSERT

row…

Comparison of Database Triggers and Oracle Forms Triggers
Database triggers are different from Forms Builder triggers.

Database Trigger Forms Builder Trigger

Executed by actions from any database
tool or application

Executed only within a particular Forms Builder
application

Always triggered by a SQL DML, DDL,
or a certain database action

Can be triggered by navigating from field to
field, by pressing a key, or by many other
actions

Is distinguished as either a statement or
row trigger

Is distinguished as a statement or row trigger

Upon failure, causes the triggering
statement to roll back

Upon failure, causes the cursor to freeze and
may cause the entire transaction to roll back

Fires independently of, and in addition
to, Forms Builder triggers

Fires independently of, and in addition to,
database triggers

Executes under the security domain of
the author of the trigger

Executes under the security domain of the Forms
Builder user

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-26

Copyright © 2006, Oracle. All rights reserved.

Managing Triggers

• Disable or reenable a database trigger:

• Disable or reenable all triggers for a table:

• Recompile a trigger for a table:

ALTER TRIGGER trigger_name DISABLE | ENABLE

ALTER TABLE table_name DISABLE | ENABLE
ALL TRIGGERS

ALTER TRIGGER trigger_name COMPILE

Managing Triggers
A trigger has two modes or states: ENABLED and DISABLED. When a trigger is first
created, it is enabled by default. The Oracle server checks integrity constraints for enabled
triggers and guarantees that triggers cannot compromise them. In addition, the Oracle
server provides read-consistent views for queries and constraints, manages the
dependencies, and provides a two-phase commit process if a trigger updates remote tables
in a distributed database.
Disabling a Trigger

• By using the ALTER TRIGGER syntax, or disable all triggers on a table by using the
ALTER TABLE syntax

• To improve performance or to avoid data integrity checks when loading massive
amounts of data with utilities such as SQL*Loader. Consider disabling a trigger
when it references a database object that is currently unavailable, due to a failed
network connection, disk crash, offline data file, or offline tablespace.

Recompiling a Trigger
• By using the ALTER TRIGGER command to explicitly recompile a trigger that is

invalid
• By issuing an ALTER TRIGGER statement with the COMPILE option, regardless of

whether it is valid or invalid

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-27

Copyright © 2006, Oracle. All rights reserved.

Removing Triggers

To remove a trigger from the database, use the DROP
TRIGGER statement:

Example:

Note: All triggers on a table are removed when the
table is removed.

DROP TRIGGER secure_emp;

DROP TRIGGER trigger_name;

Removing Triggers
When a trigger is no longer required, use a SQL statement in iSQL*Plus to remove it.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-28

Copyright © 2006, Oracle. All rights reserved.

Testing Triggers

• Test each triggering data operation, as well as
nontriggering data operations.

• Test each case of the WHEN clause.
• Cause the trigger to fire directly from a basic data

operation, as well as indirectly from a procedure.
• Test the effect of the trigger on other triggers.
• Test the effect of other triggers on the trigger.

Testing Triggers
Testing code can be a time-consuming process. Do the following when testing triggers:

• Ensure that the trigger works properly by testing a number of cases separately:
- Test the most common success scenarios first.
- Test the most common failure conditions to see that they are properly managed.

• The more complex the trigger, the more detailed your testing is likely to be. For
example, if you have a row trigger with a WHEN clause specified, then you should
ensure that the trigger fires when the conditions are satisfied. Or, if you have
cascading triggers, you need to test the effect of one trigger on the other and ensure
that you end up with the desired results.

• Use the DBMS_OUTPUT package to debug triggers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-29

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Create database triggers that are invoked by DML

operations
• Create statement and row trigger types
• Use database trigger-firing rules
• Enable, disable, and manage database triggers
• Develop a strategy for testing triggers
• Remove database triggers

Summary
This lesson covered creating database triggers that execute before, after, or instead of a
specified DML operation. Triggers are associated with database tables or views. The
BEFORE and AFTER timings apply to DML operations on tables. The INSTEAD OF
trigger is used as a way to replace DML operations on a view with appropriate DML
statements against other tables in the database.
Triggers are enabled by default but can be disabled to suppress their operation until
enabled again. If business rules change, triggers can be removed or altered as required.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-30

Copyright © 2006, Oracle. All rights reserved.

Practice 10: Overview

This practice covers the following topics:
• Creating row triggers
• Creating a statement trigger
• Calling procedures from a trigger

Practice 10: Overview
You create statement and row triggers in this practice. You create procedures that are
invoked from the triggers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 10-31

Practice 10
1. The rows in the JOBS table store a minimum and maximum salary allowed for

different JOB_ID values. You are asked to write code to ensure that employees’
salaries fall in the range allowed for their job type, for insert and update operations.

a. Write a procedure called CHECK_SALARY that accepts two parameters, one
for an employee’s job ID string and the other for the salary. The procedure uses
the job ID to determine the minimum and maximum salary for the specified
job. If the salary parameter does not fall within the salary range of the job,
inclusive of the minimum and maximum, then it should raise an application
exception, with the message “Invalid salary <sal>. Salaries
for job <jobid> must be between <min> and <max>”.
Replace the various items in the message with values supplied by parameters
and variables populated by queries. Save the file.

b. Create a trigger called CHECK_SALARY_TRG on the EMPLOYEES table that
fires before an INSERT or UPDATE operation on each row. The trigger must
call the CHECK_SALARY procedure to carry out the business logic. The trigger
should pass the new job ID and salary to the procedure parameters.

2. Test the CHECK_SAL_TRG using the following cases:
a. Using your EMP_PKG.ADD_EMPLOYEE procedure, add employee Eleanor

Beh to department 30. What happens and why?
b. Update the salary of employee 115 to $2,000. In a separate update operation,

change the employee job ID to HR_REP. What happens in each case?
c. Update the salary of employee 115 to $2,800. What happens?

3. Update the CHECK_SALARY_TRG trigger to fire only when the job ID or salary
values have actually changed.

a. Implement the business rule using a WHEN clause to check whether the
JOB_ID or SALARY values have changed.
Note: Make sure that the condition handles the NULL in the
OLD.column_name values if an INSERT operation is performed; otherwise,
an insert operation will fail.

b. Test the trigger by executing the EMP_PKG.ADD_EMPLOYEE procedure with
the following parameter values: first_name='Eleanor', last
name='Beh', email='EBEH', job='IT_PROG', sal=5000.

c. Update employees with the IT_PROG job by incrementing their salary by
$2,000. What happens?

d. Update the salary to $9,000 for Eleanor Beh.
Hint: Use an UPDATE statement with a subquery in the WHERE clause. What
happens?

e. Change the job of Eleanor Beh to ST_MAN using another UPDATE
statement with a subquery. What happens?

4. You are asked to prevent employees from being deleted during business hours.
a. Write a statement trigger called DELETE_EMP_TRG on the EMPLOYEES table

to prevent rows from being deleted during weekday business hours, which are
from 9:00 a.m. to 6:00 p.m.

b. Attempt to delete employees with JOB_ID of SA_REP who are not assigned
to a department.
Hint: This is employee Grant with ID 178.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Applications for Triggers

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Create additional database triggers
• Explain the rules governing triggers
• Implement triggers

Lesson Aim
In this lesson, you learn how to create more database triggers and learn the rules governing
triggers. You also learn about the many applications of triggers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-3

Copyright © 2006, Oracle. All rights reserved.

Creating Database Triggers

• Triggering a user event:
– CREATE, ALTER, or DROP
– Logging on or off

• Triggering database or system event:
– Shutting down or starting up the database
– A specific error (or any error) being raised

Creating Database Triggers
Before coding the trigger body, decide on the components of the trigger.
Triggers on system events can be defined at the database or schema level. For example, a
database shutdown trigger is defined at the database level. Triggers on data definition
language (DDL) statements, or a user logging on or off, can also be defined at either the
database level or schema level. Triggers on data manipulation language (DML) statements
are defined on a specific table or a view.
A trigger defined at the database level fires for all users, and a trigger defined at the
schema or table level fires only when the triggering event involves that schema or table.
Triggering events that can cause a trigger to fire:

• A data definition statement on an object in the database or schema
• A specific user (or any user) logging on or off
• A database shutdown or startup
• Any error that occurs

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-4

Copyright © 2006, Oracle. All rights reserved.

Creating Triggers on DDL Statements

Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name
Timing
[ddl_event1 [OR ddl_event2 OR ...]]
ON {DATABASE|SCHEMA}
trigger_body

Creating Triggers on DDL Statements

The trigger body represents a complete PL/SQL block.
You can create triggers for these events on DATABASE or SCHEMA. You also specify
BEFORE or AFTER for the timing of the trigger.
DDL triggers fire only if the object being created is a cluster, function, index, package,
procedure, role, sequence, synonym, table, tablespace, trigger, type, view, or user.

DDL_Event Possible Values
CREATE Causes the Oracle server to fire the trigger whenever a CREATE

statement adds a new database object to the dictionary
ALTER Causes the Oracle server to fire the trigger whenever an ALTER

statement modifies a database object in the data dictionary
DROP Causes the Oracle server to fire the trigger whenever a DROP statement

removes a database object in the data dictionary

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-5

Copyright © 2006, Oracle. All rights reserved.

Creating Triggers on System Events

Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name
timing
[database_event1 [OR database_event2 OR ...]]
ON {DATABASE|SCHEMA}
trigger_body

Create Trigger Syntax

You can create triggers for these events on DATABASE or SCHEMA, except SHUTDOWN
and STARTUP, which apply only to DATABASE.

Database_event Possible Values
AFTER
SERVERERROR

Causes the Oracle server to fire the trigger whenever a server error
message is logged

AFTER LOGON Causes the Oracle server to fire the trigger whenever a user logs on to the
database

BEFORE LOGOFF Causes the Oracle server to fire the trigger whenever a user logs off the
database

AFTER STARTUP Causes the Oracle server to fire the trigger whenever the database is
opened

BEFORE
SHUTDOWN

Causes the Oracle server to fire the trigger whenever the database is shut
down

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-6

Copyright © 2006, Oracle. All rights reserved.

LOGON and LOGOFF Triggers: Example

CREATE OR REPLACE TRIGGER logon_trig
AFTER LOGON ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id,log_date,action)
VALUES (USER, SYSDATE, 'Logging on');
END;
/

CREATE OR REPLACE TRIGGER logoff_trig
BEFORE LOGOFF ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id,log_date,action)
VALUES (USER, SYSDATE, 'Logging off');
END;
/

LOGON and LOGOFF Triggers: Example
You can create these triggers to monitor how often you log on and off, or you may want to
write a report that monitors the length of time for which you are logged on. When you
specify ON SCHEMA, the trigger fires for the specific user. If you specify ON DATABASE,
the trigger fires for all users.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-7

Copyright © 2006, Oracle. All rights reserved.

CALL Statements

Note: There is no semicolon at the end of the CALL
statement.

CREATE OR REPLACE TRIGGER log_employee
BEFORE INSERT ON EMPLOYEES
CALL log_execution
/

CREATE [OR REPLACE] TRIGGER trigger_name
timing
event1 [OR event2 OR event3]
ON table_name
[REFERENCING OLD AS old | NEW AS new]
[FOR EACH ROW]
[WHEN condition]
CALL procedure_name
/

CALL Statements
A CALL statement enables you to call a stored procedure, rather than code the PL/SQL
body in the trigger itself. The procedure can be implemented in PL/SQL, C, or Java.
The call can reference the trigger attributes :NEW and :OLD as parameters, as in the
following example:

CREATE TRIGGER salary_check
BEFORE UPDATE OF salary, job_id ON employees
FOR EACH ROW
WHEN (NEW.job_id <> 'AD_PRES')
CALL check_salary(:NEW.job_id, :NEW.salary)
/

Note: There is no semicolon at the end of the CALL statement.
In the preceding example, the trigger calls a check_salary procedure. The procedure
compares the new salary with the salary range for the new job ID from the JOBS table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-8

Copyright © 2006, Oracle. All rights reserved.

Trigger event

UPDATE employees
SET salary = 3400
WHERE last_name = 'Stiles';

EMPLOYEES table Failure

Triggered table/
mutating table

BEFORE UPDATE row

CHECK_SALARY
trigger

Reading Data from a Mutating Table

…
… 3400

Rules Governing Triggers
Reading and writing data using triggers is subject to certain rules. The restrictions apply
only to row triggers, unless a statement trigger is fired as a result of ON DELETE
CASCADE.

Mutating Table
A mutating table is a table that is currently being modified by an UPDATE, DELETE, or
INSERT statement, or a table that might need to be updated by the effects of a declarative
DELETE CASCADE referential integrity action. For STATEMENT triggers, a table is not
considered a mutating table.
The triggered table itself is a mutating table, as well as any table referencing it with the
FOREIGN KEY constraint. This restriction prevents a row trigger from seeing an
inconsistent set of data.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-9

Copyright © 2006, Oracle. All rights reserved.

Mutating Table: Example

CREATE OR REPLACE TRIGGER check_salary
BEFORE INSERT OR UPDATE OF salary, job_id
ON employees
FOR EACH ROW
WHEN (NEW.job_id <> 'AD_PRES')

DECLARE
minsalary employees.salary%TYPE;
maxsalary employees.salary%TYPE;

BEGIN
SELECT MIN(salary), MAX(salary)
INTO minsalary, maxsalary
FROM employees
WHERE job_id = :NEW.job_id;
IF :NEW.salary < minsalary OR

:NEW.salary > maxsalary THEN
RAISE_APPLICATION_ERROR(-20505,'Out of range');

END IF;
END;
/

Mutating Table: Example
The CHECK_SALARY trigger in the example attempts to guarantee that whenever a new
employee is added to the EMPLOYEES table or whenever an existing employee’s salary or
job ID is changed, the employee’s salary falls within the established salary range for the
employee’s job.
When an employee record is updated, the CHECK_SALARY trigger is fired for each row
that is updated. The trigger code queries the same table that is being updated. Therefore, it
is said that the EMPLOYEES table is a mutating table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-10

Copyright © 2006, Oracle. All rights reserved.

Mutating Table: Example

UPDATE employees

SET salary = 3400

WHERE last_name = 'Stiles';

Mutating Table: Example (continued)
In the example, the trigger code tries to read or select data from a mutating table.
If you restrict the salary within a range between the minimum existing value and the
maximum existing value, then you get a run-time error. The EMPLOYEES table is
mutating, or in a state of change; therefore, the trigger cannot read from it.
Remember that functions can also cause a mutating table error when they are invoked in a
DML statement.

Possible Solutions
Possible solutions to this mutating table problem include the following:

• Store the summary data (the minimum salaries and the maximum salaries) in another
summary table, which is kept up-to-date with other DML triggers.

• Store the summary data in a PL/SQL package, and access the data from the package.
This can be done in a BEFORE statement trigger.

Depending on the nature of the problem, a solution can become more convoluted and
difficult to solve. In this case, consider implementing the rules in the application or middle
tier and avoid using database triggers to perform overly complex business rules.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-11

Copyright © 2006, Oracle. All rights reserved.

Benefits of Database Triggers

• Improved data security:
– Provide enhanced and complex security checks
– Provide enhanced and complex auditing

• Improved data integrity:
– Enforce dynamic data integrity constraints
– Enforce complex referential integrity constraints
– Ensure that related operations are performed

together implicitly

Benefits of Database Triggers
You can use database triggers:

• As alternatives to features provided by the Oracle server
• If your requirements are more complex or more simple than those provided by the

Oracle server
• If your requirements are not provided by the Oracle server at all O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-12

Copyright © 2006, Oracle. All rights reserved.

Managing Triggers

The following system privileges are required to
manage triggers:
• The CREATE/ALTER/DROP (ANY) TRIGGER privilege

that enables you to create a trigger in any schema
• The ADMINISTER DATABASE TRIGGER privilege that

enables you to create a trigger on DATABASE
• The EXECUTE privilege (if your trigger refers to any

objects that are not in your schema)
Note: Statements in the trigger body use the privileges
of the trigger owner, not the privileges of the user
executing the operation that fires the trigger.

Managing Triggers
To create a trigger in your schema, you need the CREATE TRIGGER system privilege, and
you must either own the table specified in the triggering statement, have the ALTER
privilege for the table in the triggering statement, or have the ALTER ANY TABLE system
privilege. You can alter or drop your triggers without any further privileges being required.
If the ANY keyword is used, then you can create, alter, or drop your own triggers and those
in another schema and can be associated with any user’s table.
You do not need any privileges to invoke a trigger in your schema. A trigger is invoked by
DML statements that you issue. But if your trigger refers to any objects that are not in your
schema, the user creating the trigger must have the EXECUTE privilege on the referenced
procedures, functions, or packages, and not through roles. As with stored procedures,
statements in the trigger body use the privileges of the trigger owner, not the privileges of
the user executing the operation that fires the trigger.
To create a trigger on DATABASE, you must have the ADMINISTER DATABASE
TRIGGER privilege. If this privilege is later revoked, then you can drop the trigger but you
cannot alter it.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-13

Copyright © 2006, Oracle. All rights reserved.

Business Application Scenarios for
Implementing Triggers

You can use triggers for:
• Security
• Auditing
• Data integrity
• Referential integrity
• Table replication
• Computing derived data automatically
• Event logging

Note: Appendix C covers each of these examples in
more detail.

Business Application Scenarios for Implementing Triggers
Develop database triggers in order to enhance features that cannot otherwise be
implemented by the Oracle server or as alternatives to those provided by the Oracle server.

Feature Enhancement

Security The Oracle server allows table access to users or roles. Triggers allow
table access according to data values.

Auditing The Oracle server tracks data operations on tables. Triggers track values
for data operations on tables.

Data integrity The Oracle server enforces integrity constraints. Triggers implement
complex integrity rules.

Referential integrity The Oracle server enforces standard referential integrity rules. Triggers
implement nonstandard functionality.

Table replication The Oracle server copies tables asynchronously into snapshots. Triggers
copy tables synchronously into replicas.

Derived data The Oracle server computes derived data values manually. Triggers
compute derived data values automatically.

Event logging The Oracle server logs events explicitly. Triggers log events transparently.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-14

Copyright © 2006, Oracle. All rights reserved.

Viewing Trigger Information

You can view the following trigger information:
• USER_OBJECTS data dictionary view: Object

information
• USER_TRIGGERS data dictionary view: Text of the

trigger
• USER_ERRORS data dictionary view: PL/SQL syntax

errors (compilation errors) of the trigger

Viewing Trigger Information
The slide shows the data dictionary views that you can access to get information regarding
the triggers.
The USER_OBJECTS view contains the name and status of the trigger and the date and
time when the trigger was created.
The USER_ERRORS view contains the details about the compilation errors that occurred
while a trigger was compiling. The contents of these views are similar to those for
subprograms.
The USER_TRIGGERS view contains details such as name, type, triggering event, the
table on which the trigger is created, and the body of the trigger.
The SELECT Username FROM USER_USERS; statement gives the name of the owner
of the trigger, not the name of the user who is updating the table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-15

Copyright © 2006, Oracle. All rights reserved.

Column

TRIGGER_NAME

TRIGGER_TYPE

TRIGGERING_EVENT

TABLE_NAME

REFERENCING_NAMES

WHEN_CLAUSE

STATUS

TRIGGER_BODY

Column Description

Name of the trigger

The type is BEFORE, AFTER, INSTEAD OF

The DML operation firing the trigger

Name of the database table

Name used for :OLD and :NEW

The when_clause used

The status of the trigger

The action to take

Using USER_TRIGGERS

Abridged column list*

Using USER_TRIGGERS
If the source file is unavailable, then you can use iSQL*Plus to regenerate it from
USER_TRIGGERS. You can also examine the ALL_TRIGGERS and DBA_TRIGGERS
views, each of which contains the additional column OWNER, for the owner of the object.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-16

Copyright © 2006, Oracle. All rights reserved.

SELECT trigger_name, trigger_type, triggering_event,
table_name, referencing_names,
status, trigger_body

FROM user_triggers
WHERE trigger_name = 'RESTRICT_SALARY';

Listing the Code of Triggers

Example
Use the USER_TRIGGERS data dictionary view to display information about the
RESTRICT_SALARY trigger.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-17

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use advanced database triggers
• List mutating and constraining rules for triggers
• Describe real-world applications of triggers
• Manage triggers
• View trigger information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-18

Copyright © 2006, Oracle. All rights reserved.

Practice 11: Overview

This practice covers the following topics:
• Creating advanced triggers to manage data

integrity rules
• Creating triggers that cause a mutating table

exception
• Creating triggers that use package state to solve

the mutating table problem

Practice 11: Overview
In this practice, you implement a simple business rule for ensuring data integrity of
employees’ salaries with respect to the valid salary range for their job. You create a trigger
for this rule.
During this process, your new triggers cause a cascading effect with triggers created in the
practice section of the lesson titled “Creating Triggers.” The cascading effect results in a
mutating table exception on the JOBS table. You then create a PL/SQL package and
additional triggers to solve the mutating table issue.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-19

Practice 11
1. Employees receive an automatic increase in salary if the minimum salary for a job is

increased to a value larger than their current salary. Implement this requirement
through a package procedure called by a trigger on the JOBS table. When you
attempt to update the minimum salary in the JOBS table and try to update the
employees’ salary, the CHECK_SALARY trigger attempts to read the JOBS table,
which is subject to change, and you get a mutating table exception that is resolved by
creating a new package and additional triggers.

a. Update your EMP_PKG package (from Practice 7) by adding a procedure called
SET_SALARY that updates the employees’ salaries. The procedure accepts two
parameters: the job ID for those salaries that may have to be updated, and the
new minimum salary for the job ID. The procedure sets all the employees’
salaries to the minimum for their jobs if their current salaries are less than the
new minimum value.

b. Create a row trigger named UPD_MINSALARY_TRG on the JOBS table that
invokes the EMP_PKG.SET_SALARY procedure, when the minimum salary in
the JOBS table is updated for a specified job ID.

c. Write a query to display the employee ID, last name, job ID, current salary, and
minimum salary for employees who are programmers—that is, their JOB_ID
is 'IT_PROG'. Then update the minimum salary in the JOBS table to increase
it by $1,000. What happens?

2. To resolve the mutating table issue, you create a JOBS_PKG to maintain in memory
a copy of the rows in the JOBS table. Then the CHECK_SALARY procedure is
modified to use the package data rather than issue a query on a table that is mutating
to avoid the exception. However, a BEFORE INSERT OR UPDATE statement trigger
must be created on the EMPLOYEES table to initialize the JOBS_PKG package state
before the CHECK_SALARY row trigger is fired.

a. Create a new package called JOBS_PKG with the following specification:
PROCEDURE initialize;
FUNCTION get_minsalary(jobid VARCHAR2) RETURN NUMBER;
FUNCTION get_maxsalary(jobid VARCHAR2) RETURN NUMBER;
PROCEDURE set_minsalary(jobid VARCHAR2,min_salary NUMBER);
PROCEDURE set_maxsalary(jobid VARCHAR2,max_salary NUMBER);

b. Implement the body of the JOBS_PKG, where:
You declare a private PL/SQL index-by table called jobs_tabtype that is
indexed by a string type based on the JOBS.JOB_ID%TYPE.
You declare a private variable called jobstab based on the
jobs_tabtype.
The INITIALIZE procedure reads the rows in the JOBS table by using a
cursor loop, and uses the JOB_ID value for the jobstab index that is
assigned its corresponding row. The GET_MINSALARY function uses a
jobid parameter as an index to the jobstab and returns the min_salary
for that element. The GET_MAXSALARY function uses a jobid parameter as
an index to the jobstab and returns the max_salary for that element.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 11-20

Practice 11 (continued)
The SET_MINSALARY procedure uses its jobid as an index to the
jobstab to set the min_salary field of its element to the value in the
min_salary parameter.
The SET_MAXSALARY procedure uses its jobid as an index to the
jobstab to set the max_salary field of its element to the value in the
max_salary parameter.

c. Copy the CHECK_SALARY procedure from Practice 10, Exercise 1a, and
modify the code by replacing the query on the JOBS table with statements to
set the local minsal and maxsal variables with values from the JOBS_PKG
data by calling the appropriate GET_*SALARY functions. This step should
eliminate the mutating trigger exception.

d. Implement a BEFORE INSERT OR UPDATE statement trigger called
INIT_JOBPKG_TRG that uses the CALL syntax to invoke the
JOBS_PKG.INITIALIZE procedure to ensure that the package state is
current before the DML operations are performed.

e. Test the code changes by executing the query to display the employees who are
programmers, then issue an update statement to increase the minimum salary of
the IT_PROG job type by 1000 in the JOBS table, followed by a query on the
employees with the IT_PROG job type to check the resulting changes. Which
employees’ salaries have been set to the minimum for their jobs?

3. Because the CHECK_SALARY procedure is fired by the CHECK_SALARY_TRG
before inserting or updating an employee, you must check whether this still works as
expected.

a. Test this by adding a new employee using EMP_PKG.ADD_EMPLOYEE with
the following parameters: (‘Steve’, ‘Morse’, ‘SMORSE’, and
sal => 6500). What happens?

b. To correct the problem encountered when adding or updating an employee,
create a BEFORE INSERT OR UPDATE statement trigger called
EMPLOYEE_INITJOBS_TRG on the EMPLOYEES table that calls the
JOBS_PKG.INITIALIZE procedure. Use the CALL syntax in the trigger
body.

c. Test the trigger by adding employee Steve Morse again. Confirm the inserted
record in the employees table by displaying the employee ID, first and last
names, salary, job ID, and department ID.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Understanding and Influencing
the PL/SQL Compiler

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe native and interpreted compilations
• List the features of native compilation
• Switch between native and interpreted

compilations
• Set parameters that influence PL/SQL compilation
• Query data dictionary views on how PL/SQL code

is compiled
• Use the compiler warning mechanism and the

DBMS_WARNING package to implement compiler
warnings

Lesson Aim
In this lesson, you learn to distinguish between native and interpreted compilation of
PL/SQL code. The lesson discusses how to use native compilation, which is the default,
for Oracle Database 10g with the benefit of having faster execution time for your PL/SQL
code.
You also learn how to influence the compiler settings by setting variable session
parameters, or using the programmatic interface provided by the DBMS_WARNING
package. The lesson covers query compilation settings using the
USER_STORED_SETTINGS and USER_PLSQL_OBJECTS data dictionary views.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-3

Copyright © 2006, Oracle. All rights reserved.

Native and Interpreted Compilation

Natively compiled code
• Translated C and compiled
• Copied to a code library

PL/SQL source

m-code Native code library in OS directory

C compiler
Translated
to C code

Interpreted code
• Compiled to m-code
• Stored in the database

Native and Interpreted Compilation
As depicted in the slide, on the left of the vertical dotted line, a program unit processed as
interpreted PL/SQL is compiled into machine-readable code (m-code), which is stored in
the database and interpreted at run time.
On the right of the vertical dotted line, the PL/SQL source is subjected to native
compilation, where the PL/SQL statements are compiled to m-code that is translated into
C code. The m-code is not retained. The C code is compiled with the usual C compiler and
linked to the Oracle process using native machine code library. The code library is stored
in the database but copied to a specified directory path in the operating system, from
which it is loaded at run time. Native code bypasses the typical run-time interpretation of
code.
Note: Native compilation cannot do much to speed up SQL statements called from
PL/SQL, but it is most effective for computation-intensive PL/SQL procedures that do not
spend most of their time executing SQL.
You can natively compile both the supplied Oracle packages and your own PL/SQL code.
Compiling all PL/SQL code in the database means that you see the speedup in your own
code and all the built-in PL/SQL packages. If you decide that you will have significant
performance gains in database operations using PL/SQL native compilation, Oracle
recommends that you compile the whole database using the NATIVE setting.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-4

Copyright © 2006, Oracle. All rights reserved.

Features and Benefits
of Native Compilation

Native compilation:
• Uses a generic makefile that uses the following

operating system software:
– C compiler
– Linker
– Make utility

• Generates shared libraries that are copied to the
file system and loaded at run time

• Provides better performance (up to 30% faster
than interpreted code) for computation-intensive
procedural operations

Features and Benefits of Native Compilation
The PL/SQL native compilation process makes use of a makefile, called
spnc_makefile.mk, located in the $ORACLE_HOME/plsql directory. The
makefile is processed by the Make utility that invokes the C compiler, which is the
linker on the supported operating system, to compile and link the resulting C code into
shared libraries. The shared libraries are stored inside the database and are copied to the
file system. At run time, the shared libraries are loaded and run when the PL/SQL
subprogram is invoked.
In accordance with Optimal Flexible Architecture (OFA) recommendations, the shared
libraries should be stored near the data files. C code runs faster than PL/SQL, but it takes
longer to compile than m-code. PL/SQL native compilation provides the greatest
performance gains for computation-intensive procedural operations.
Examples of such operations are data warehouse applications and applications with
extensive server-side transformations of data for display. In such cases, expect speed
increases of up to 30%.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-5

Copyright © 2006, Oracle. All rights reserved.

Considerations When Using
Native Compilation

Consider the following:
• Debugging tools for PL/SQL cannot debug

natively compiled code.
• Natively compiled code is slower to compile than

interpreted code.
• Large amounts of natively compiled subprograms

can affect performance due to operating system–
imposed limitations when handling shared
libraries. OS directory limitations can be managed
by setting database initialization parameters:
– PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT and
– PLSQL_NATIVE_LIBRARY_DIR

Limitations of Native Compilation
As stated, the key benefit of natively compiled code is faster execution, particularly for
computationally intensive PL/SQL code, as much as 30% more. Consider that:

• Debugging tools for PL/SQL do not handle procedures compiled for native
execution. Therefore, use interpreted compilation in development environments, and
natively compile the code in a production environment.

• The compilation time increases when using native compilation because of the
requirement to translate the PL/SQL statement to its C equivalent and execute the
Make utility to invoke the C compiler and linker for generating the resulting
compiled code library.

• If many procedures and packages (more than 5,000) are compiled for native
execution, a large number of shared objects in a single directory may affect
performance. The operating system directory limitations can be managed by
automatically distributing libraries across several subdirectories. To do this, perform
the following tasks before natively compiling the PL/SQL code:

- Set the PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT database initialization
parameter to a large value, such as 1,000, before creating the database or
compiling the PL/SQL packages or procedures.

- Create PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT subdirectories in the
path specified in the PLSQL_NATIVE_LIBRARY_DIR initialization
parameter.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-6

Copyright © 2006, Oracle. All rights reserved.

Parameters Influencing Compilation

System parameters are set in the initSID.ora file or
by using the SPFILE:

System or session parameters

PLSQL_NATIVE_LIBRARY_DIR = full-directory-path-name
PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT = count

PLSQL_COMPILER_FLAGS = 'NATIVE' or 'INTERPRETED'

Parameters Influencing Compilation
In all circumstances, whether you intend to compile a database as NATIVE or you intend
to compile individual PL/SQL units at the session level, you must set all required
parameters.
The system parameters are set in the initSID.ora file by using the SPFILE
mechanism. Two parameters that are set as system-level parameters are the following:

• The PLSQL_NATIVE_LIBRARY_DIR value, which specifies the full path and
directory name used to store the shared libraries that contain natively compiled
PL/SQL code

• The PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT value, which specifies the
number of subdirectories in the directory specified by the
PLSQL_NATIVE_LIBRARY_DIR parameter. Use a script to create directories with
consistent names (for example, d0, d1, d2, and so on), and then the libraries are
automatically distributed among these subdirectories by the PL/SQL compiler.

By default, PL/SQL program units are kept in one directory.
The PLSQL_COMPILER_FLAGS parameter can be set to a value of NATIVE or
INTERPRETED, either as a database initialization for a systemwide default or for each
session using an ALTER SESSION statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-7

Copyright © 2006, Oracle. All rights reserved.

Switching Between Native
and Interpreted Compilation

• Setting native compilation:
– For the system:

– For the session:

• Setting interpreted compilation:
– For the system level:

– For the session:

ALTER SYSTEM SET plsql_compiler_flags='NATIVE';

ALTER SESSION SET plsql_compiler_flags='NATIVE';

ALTER SYSTEM
SET plsql_compiler_flags='INTERPRETED';

ALTER SESSION
SET plsql_compiler_flags='INTERPRETED';

Switching Between Native and Interpreted Compilation
The PLSQL_COMPILER_FLAGS parameter determines whether PL/SQL code is natively
compiled or interpreted, and determines whether debug information is included. The
default setting is INTERPRETED,NON_DEBUG. To enable PL/SQL native compilation,
you must set the value of PLSQL_COMPILER_FLAGS to NATIVE.
If you compile the whole database as NATIVE, then Oracle recommends that you set
PLSQL_COMPILER_FLAGS at the system level.
To set compilation type at the system level (usually done by a DBA), execute the
following statements:

ALTER SYSTEM SET plsql_compiler_flags='NATIVE'
ALTER SYSTEM SET plsql_compiler_flags='INTERPRETED'

To set compilation type at the session level, execute one of the following statements:
ALTER SESSION SET plsql_compiler_flags='NATIVE'
ALTER SESSION SET plsql_compiler_flags='INTERPRETED'

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-8

Copyright © 2006, Oracle. All rights reserved.

Viewing Compilation Information
in the Data Dictionary

Query information in the following views:
• USER_STORED_SETTINGS

• USER_PLSQL_OBJECTS

Example:

Note: The PARAM_VALUE column has a value of NATIVE
for procedures that are compiled for native execution;
otherwise, it has a value of INTERPRETED.

SELECT param_value
FROM user_stored_settings
WHERE param_name = 'plsql_compiler_flags'
AND object_name = 'GET_EMPLOYEES';

Viewing Compilation Information in the Data Dictionary
To check whether an existing procedure is compiled for native execution or not, you can
query the following data dictionary views:

[USER | ALL | DBA]_STORED_SETTINGS
[USER | ALL | DBA]_PLSQL_OBJECTS

The example in the slide shows how you can check the status of the procedure called
GET_EMPLOYEES. The PARAM_VALUE column has a value of NATIVE for procedures
that are compiled for native execution; otherwise, it has a value of INTERPRETED.
After procedures are natively compiled and turned into shared libraries, they are
automatically linked into the Oracle process. You do not need to restart the database, or
move the shared libraries to a different location. You can call back and forth between
stored procedures, whether they are all compiled interpreted (the default), all compiled for
native execution, or a mixture of both.
Because the PLSQL_COMPILER_FLAGS setting is stored inside the library unit for each
procedure, the procedures compiled for native execution are compiled the same way when
the procedure is recompiled automatically after being invalidated, such as when a table
that it depends on is re-created.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-9

Copyright © 2006, Oracle. All rights reserved.

Using Native Compilation

To enable native compilation, perform the following
steps:
1. Edit the supplied makefile and enter appropriate

paths and other values for your system.
2. Set the PLSQL_COMPILER_FLAGS parameter (at

system or session level) to the value NATIVE. The
default is INTERPRETED.

3. Compile the procedures, functions, and packages.
4. Query the data dictionary to see that a procedure

is compiled for native execution.

Using Native Compilation
To enable native compilation, perform the following steps:

1. Check and edit the compiler, linker, utility paths, and other values, if required.
2. Set the PLSQL_COMPILER_FLAGS to NATIVE.
3. Compile the procedures, functions, and packages. Compiling can be done by:

- Using the appropriate ALTER PROCEDURE, ALTER FUNCTION, or ALTER
PACKAGE statements with the COMPILE option

- Dropping the procedure and re-creating it
- Running one of the SQL*Plus scripts that sets up a set of Oracle-supplied

packages
- Creating a database using a preconfigured initialization file with its

PLSQL_COMPILER_FLAGS set to NATIVE
4. Confirm the compilation type using the appropriate data dictionary tables.

Note: Dependencies between database objects are handled in the same manner as in
previous Oracle database versions. If an object on which a natively compiled PL/SQL
program unit depends changes, then the PL/SQL module is invalidated. The next time the
same program unit is executed, the RDBMS attempts to revalidate the module. When a
module is recompiled as part of revalidation, it is compiled using the setting that was used
the last time the module was compiled, and it is saved in the *_STORED_SETTINGS
view.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-10

Copyright © 2006, Oracle. All rights reserved.

Compiler Warning Infrastructure

The PL/SQL compiler in Oracle Database 10g has been
enhanced to produce warnings for subprograms. Warning
levels:
• Can be set:

– Declaratively with the PLSQL_WARNINGS initialization
parameter

– Programmatically using the DBMS_WARNINGS package
• Are arranged in three categories: severe, performance,

and informational
• Can be enabled and disabled by category or a specific

message
Examples of warning messages:

SP2-0804: Procedure created with compilation warnings
PLW-07203: Parameter 'IO_TBL' may benefit from use
of the NOCOPY compiler hint.

Compiler Warning Infrastructure
The Oracle PL/SQL compiler can issue warnings when you compile subprograms that
produce ambiguous results or use inefficient constructs. You can selectively enable and
disable these warnings:

• Declaratively by setting the PLSQL_WARNINGS initialization parameter
• Programmatically using the DBMS_WARNINGS package

The warning level is arranged in the following categories: severe, performance, and
informational. Warnings levels can be enabled or disabled by category or by a specific
warning message number.
Benefits of Compiler Warnings
Using compiler warnings can help to:

• Make your programs more robust and avoid problems at run time
• Identify potential performance problems
• Indicate factors that produce undefined results

Note: You can enable checking for certain warning conditions when these conditions are
not serious enough to produce an error and keep you from compiling a subprogram.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-11

Copyright © 2006, Oracle. All rights reserved.

Setting Compiler Warning Levels

Set the PLSQL_WARNINGS initialization parameter to
enable the database to issue warning messages.

• The PLSQL_WARNINGS combine a qualifier value
(ENABLE, DISABLE, or ERROR) with a comma-
separated list of message numbers, or with one of
the following modifier values:
– ALL, SEVERE, INFORMATIONAL, or PERFORMANCE

• Warning messages use a PLW prefix.
PLW-07203: Parameter 'IO_TBL' may benefit from
use of the NOCOPY compiler hint.

ALTER SESSION SET PLSQL_WARNINGS = 'ENABLE:SEVERE',
'DISABLE:INFORMATIONAL';

Setting Compiler Warning Levels
The PLSQL_WARNINGS setting enables or disables the reporting of warning messages by
the PL/SQL compiler, and specifies which warning messages to show as errors. The
PLSQL_WARNINGS parameter can be set for the system using the initialization file or the
ALTER SYSTEM statement, or for the session using the ALTER SESSION statement as
shown in the example in the slide. By default, the value is set to DISABLE:ALL.
The parameter value comprises a comma-separated list of quoted qualifier and modifier
keywords, where the keywords are separated by colons. The qualifier values are:
• ENABLE: To enable a specific warning or a set of warnings
• DISABLE: To disable a specific warning or a set of warnings
• ERROR: To treat a specific warning or a set of warnings as errors

The modifier value ALL applies to all warning messages. SEVERE, INFORMATIONAL,
and PERFORMANCE apply to messages in their own category, and an integer list for
specific warning messages. For example:

PLSQL_WARNINGS='ENABLE:SEVERE','DISABLE:INFORMATIONAL';

PLSQL_WARNINGS='DISABLE:ALL';

PLSQL_WARNINGS='DISABLE:5000','ENABLE:5001','ERROR:5002';

PLSQL_WARNINGS='ENABLE:(5000,5001)','DISABLE:(6000)';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-12

Copyright © 2006, Oracle. All rights reserved.

Guidelines for Using PLSQL_WARNINGS

The PLSQL_WARNINGS setting:
• Can be set to DEFERRED at the system level
• Is stored with each compiled subprogram
• That is current for the session is used, by default,

when recompiling with:
– A CREATE OR REPLACE statement
– An ALTER...COMPILE statement

• That is stored with the compiled subprogram is
used when REUSE SETTINGS is specified when
recompiling with an ALTER...COMPILE statement

Guidelines for Using PLSQL_WARNINGS
As already stated, the PLSQL_WARNINGS parameter can be set at the session level or the
system level. When setting it at the system level, you can include the value DEFERRED so
that it applies to future sessions but not the current one.
The settings for the PLSQL_WARNINGS parameter are stored along with each compiled
subprogram. If you recompile the subprogram with a CREATE OR REPLACE statement,
the current settings for that session are used. If you recompile the subprogram with an
ALTER...COMPILE statement, then the current session setting is used unless you
specify the REUSE SETTINGS clause in the statement, which uses the original setting that
is stored with the subprogram.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-13

Copyright © 2006, Oracle. All rights reserved.

DBMS_WARNING Package

The DBMS_WARNING package provides a way to
programmatically manipulate the behavior of current
system or session PL/SQL warning settings. Using
DBMS_WARNING subprograms, you can:
• Query existing settings
• Modify the settings for specific requirements or

restore original settings
• Delete the settings

Example: Saving and restoring warning settings for a
development environment that calls your code that
compiles PL/SQL subprograms, and suppresses
warnings due to business requirements

DBMS_WARNING Package
The DBMS_WARNING package provides a way to manipulate the behavior of PL/SQL
warning messages, in particular, by reading and changing the setting of the
PLSQL_WARNINGS initialization parameter to control what kinds of warnings are
suppressed, displayed, or treated as errors. This package provides the interface to query,
modify, and delete current system or session settings.
The DBMS_WARNINGS package is valuable if you are writing a development environment
that compiles PL/SQL subprograms. Using the package interface routines, you can control
PL/SQL warning messages programmatically to suit your requirements.
Here is an example: Suppose you write some code to compile PL/SQL code. You know
that the compiler will issue performance warnings when passing collection variables as
OUT or IN OUT parameters without specifying the NOCOPY hint. The general environment
that calls your compilation utility may or may not have appropriate warning level settings.
In any case, your business rules indicate that the calling environment set must be preserved
and that your compilation process should suppress the warnings. By calling subprograms
in the DBMS_WARNINGS package, you can detect the current warning settings, change the
setting to suit your business requirements, and restore the original settings when your
processing has completed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-14

Copyright © 2006, Oracle. All rights reserved.

Using DBMS_WARNING Procedures

• Package procedures change PL/SQL warnings:

– All parameters are IN parameters and have the
VARCHAR2 data type. However, the w_number
parameter is a NUMBER data type.

– Parameter string values are not case sensitive.
– The w_value parameters values are ENABLE,

DISABLE, and ERROR.
– The w_category values are ALL, INFORMATIONAL,

SEVERE, and PERFORMANCE.
– The scope value is either SESSION or SYSTEM.

Using SYSTEM requires the ALTER SYSTEM privilege.

ADD_WARNING_SETTING_CAT(w_category,w_value,scope)
ADD_WARNING_SETTING_NUM(w_number,w_value,scope)
SET_WARNING_SETTING_STRING(w_value, scope)

Using DBMS_WARNING Procedures
The package procedures are the following:
• ADD_WARNING_SETTING_CAT: Modifies the current session or system warning

settings of the warning_category previously supplied
• ADD_WARNING_SETTING_NUM: Modifies the current session or system warning

settings of the warning_number previously supplied
• SET_WARNING_SETTING_STRING: Replaces previous settings with the new

value
Using the SET_WARNING_SETTING_STRING, you can set one warning setting. If you
have multiple warning settings, you should perform the following steps:

1. Call SET_WARNING_SETTING_STRING to set the initial warning setting string.
2. Call ADD_WARNING_SETTING_CAT (or ADD_WARNING_SETTING_NUM)

repeatedly to add additional settings to the initial string.
Here is an example to establish the following warning setting string in the current session:

ENABLE:INFORMATIONAL,DISABLE:PERFORMANCE,ENABLE:SEVERE

Execute the following two lines of code:
dbms_warning.set_warning_setting_string('ENABLE:ALL','session');

dbms_warning.add_warning_setting_cat('PERFORMANCE','disable',

'session');

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-15

Copyright © 2006, Oracle. All rights reserved.

Using DBMS_WARNING Functions

• Package functions read PL/SQL warnings:

– GET_CATEGORY returns a value of ALL,
INFORMATIONAL, SEVERE, or PERFORMANCE for a
given message number.

– GET_WARNING_SETTING_CAT returns ENABLE,
DISABLE, or ERROR as the current warning value for
a category name, and GET_WARNING_SETTING_NUM
returns the value for a specific message number.

– GET_WARNING_SETTING_STRING returns the entire
warning string for the current session.

GET_CATEGORY(w_number) RETURN VARCHAR2
GET_WARNING_SETTING_CAT(w_category)RETURN VARCHAR2
GET_WARNING_SETTING_NUM(w_number) RETURN VARCHAR2
GET_WARNING_SETTING_STRING RETURN VARCHAR2

Using DBMS_WARNING Functions
The following is a list of package functions:
• GET_CATEGORY returns the category name for the given message number.
• GET_WARNING_SETTING_CAT returns the current session warning setting for the

specified category.
• GET_WARNING_SETTING_NUM returns the current session warning setting for the

specified message number.
• GET_WARNING_SETTING_STRING returns the entire warning string for the

current session.
To determine the current session warning settings, enter:

EXECUTE DBMS_OUTPUT.PUT_LINE(-
DBMS_WARNING.GET_WARNING_SETTING_STRING);

To determine the category for warning message number PLW-07203, use:
EXECUTE DBMS_OUTPUT.PUT_LINE(-

DBMS_WARNING.GET_CATEGORY(7203))

The result string should be PERFORMANCE.
Note: The message numbers must be specified as positive integers because the data type
for the GET_CATEGORY parameter is PLS_INTEGER (allowing positive integer values).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-16

Copyright © 2006, Oracle. All rights reserved.

Using DBMS_WARNING: Example

Consider the following scenario:
Save current warning settings, disable warnings for
the PERFORMANCE category, compile a PL/SQL
package, and restore the original warning setting.
CREATE PROCEDURE compile(pkg_name VARCHAR2) IS
warn_value VARCHAR2(200);
compile_stmt VARCHAR2(200) :=
'ALTER PACKAGE '|| pkg_name ||' COMPILE';

BEGIN
warn_value := -- Save current settings

DBMS_WARNING.GET_WARNING_SETTING_STRING;
DBMS_WARNING.ADD_WARNING_SETTING_CAT(-- change

'PERFORMANCE', 'DISABLE', 'SESSION');
EXECUTE IMMEDIATE compile_stmt;
DBMS_WARNING.SET_WARNING_SETTING_STRING(--restore

warn_value, 'SESSION');
END;

Using DBMS_WARNING: Example
In the slide, the example of the compile procedure is designed to compile a named
PL/SQL package. The business rules require the following:

• Warnings in the performance category are suppressed.
• The calling environment’s warning settings must be restored after the compilation is

performed.
The code does not know or care about what the calling environment warning settings are;
it simply uses the DBMS_WARNING.GET_WARNING_SETTING_STRING function to
save the current setting.
This value is used to restore the calling environment setting using the
DBMS_WARNING.SET_WARNING_SETTING_STRING procedure in the last line of the
example code. Before compiling the package using Native Dynamic SQL, the compile
procedure alters the current session warning level by disabling warnings for the
PERFORMANCE category.
For example, the compiler will suppress warnings about PL/SQL parameters passed using
OUT or IN OUT modes that do not specify the NOCOPY hint to gain better performance.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-17

Copyright © 2006, Oracle. All rights reserved.

Using DBMS_WARNING: Example

To test the compile procedure, you can use the
following script sequence in iSQL*Plus:
DECLARE
PROCEDURE print(s VARCHAR2) IS
BEGIN
DBMS_OUTPUT.PUT_LINE(s);

END;
BEGIN
print('Warning settings before: '||

DBMS_WARNING.GET_WARNING_SETTING_STRING);
compile('my_package');
print('Warning settings after: '||

DBMS_WARNING.GET_WARNING_SETTING_STRING);
END;
/
SHOW ERRORS PACKAGE MY_PACKAGE

Using DBMS_WARNING: Example (continued)
The slide shows an anonymous block that is used to display the current warning settings
for the session before compilation takes place, executes the compile procedure, and prints
the current warning settings for the session again. The before and after values for the
warning settings should be identical.
The last line containing the SHOW ERRORS PACKAGE MY_PACKAGE is used to verify
whether the warning messages in the performance category are suppressed (that is, no
performance-related warning messages are displayed).
To adequately test the compile procedure behavior, the MY_PACKAGE package should
contain a subprogram with a collection (PL/SQL table) specified as an OUT or IN OUT
argument without using the NOCOPY hint. Normally, with the PERFORMANCE category
enabled, a compiler warning will be issued. Using the code examples shown in the last two
slides, the warnings related to the NOCOPY hint are suppressed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-18

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Switch between native and interpreted

compilations
• Set parameters that influence native compilation

of PL/SQL programs
• Query data dictionary views that provide

information on PL/SQL compilation settings
• Use the PL/SQL compiler warning mechanism:

– Declaratively by setting the PLSQL_WARNINGS
parameter

– Programmatically using the DBMS_WARNING
package

Summary
The lesson covers details about how native and interpreted compilations work and how to
use parameters that influence the way PL/SQL code is compiled.
The key recommendation is to enable native compilation by default, resulting in 30%
faster performance (in some cases) for your PL/SQL logic. Benchmarks have shown that
enabling native compilation in Oracle Database 10g results in twice the performance when
compared to Oracle8i and Oracle9i databases, and as much as three times the performance
of PL/SQL code executing in an Oracle8 database environment. For more information,
refer to the Oracle white paper titled “PL/SQL Just Got Faster,” by Bryn Llewellyn and
Charles Wetherell, from the Oracle Technology Network (OTN) Web site at
http://otn.oracle.com.
The lesson also covers the following two ways of influencing the new compiler warning
system that was added to Oracle Database 10g:

• Setting the PLSQL_WARNINGS parameter
• Using the DBMS_WARNING package programmatic interface

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-19

Copyright © 2006, Oracle. All rights reserved.

Practice 12: Overview

This practice covers the following topics:
• Enabling native compilation for your session and

compiling a procedure
• Creating a subprogram to compile a PL/SQL

procedure, function, or a package; suppressing
warnings for the PERFORMANCE compiler warning
category; and restoring the original session
warning settings

• Executing the procedure to compile a PL/SQL
package containing a procedure that uses a
PL/SQL table as an IN OUT parameter without
specifying the NOCOPY hint

Practice 12: Overview
In this practice, you enable native compilation for your session and compile a procedure.
You then create a subprogram to compile a PL/SQL procedure, function, or a package, and
you suppress warnings for the PERFORMANCE compiler warning category. The procedure
must restore the original session warning settings. You then execute the procedure to
compile a PL/SQL package that you create, where the package contains a procedure with
an IN OUT parameter without specifying the NOCOPY hint.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units 12-20

Practice 12
1. Alter the PLSQL_COMPILER_FLAGS parameter to enable native compilation for

your session, and compile any subprogram that you have written.
a. Execute the ALTER SESSION command to enable native compilation.
b. Compile the EMPLOYEE_REPORT procedure. What occurs during

compilation?
c. Execute the EMPLOYEE_REPORT with the value 'UTL_FILE' as the first

parameter, and 'native_salrepXX.txt' where XX is your student
number.

d. Switch compilation to use interpreted compilation.
2. In the COMPILE_PKG (from Practice 6), add an overloaded version of the procedure

called MAKE, which will compile a named procedure, function, or package.
a. In the specification, declare a MAKE procedure that accepts two string

arguments, one for the name of the PL/SQL construct and the other for the type
of PL/SQL program, such as PROCEDURE, FUNCTION, PACKAGE, or
PACKAGE BODY.

b. In the body, write the MAKE procedure to call the DBMS_WARNINGS package
to suppress the PERFORMANCE category. However, save the current compiler
warning settings before you alter them. Then write an EXECUTE IMMEDIATE
statement to compile the PL/SQL object using an appropriate
ALTER...COMPILE statement with the supplied parameter values. Finally,
restore the compiler warning settings that were in place for the calling
environment before the procedure is invoked.

3. Write a new PL/SQL package called TEST_PKG containing a procedure called
GET_EMPLOYEES that uses an IN OUT argument.

a. In the specification, declare the GET_EMPLOYEES procedure with two
parameters: an input parameter specifying a department ID, and an IN OUT
parameter specifying a PL/SQL table of employee rows.
Hint: You must declare a TYPE in the package specification for the PL/SQL
table parameter’s data type.

b. In the package body, implement the GET_EMPLOYEES procedure to retrieve
all the employee rows for a specified department into the PL/SQL table IN
OUT parameter.
Hint: Use the SELECT … BULK COLLECT INTO syntax to simplify the
code.

4. Use the ALTER SESSION statement to set the PLSQL_WARNINGS so that all
compiler warning categories are enabled.

5. Recompile the TEST_PKG that you created two steps earlier (in Exercise 3). What
compiler warnings are displayed, if any?

6. Write a PL/SQL anonymous block to compile the TEST_PKG package by using the
overloaded COMPILE_PKG.MAKE procedure with two parameters. The anonymous
block should display the current session warning string value before and after it
invokes the COMPILE_PKG.MAKE procedure. Do you see any warning messages?
Confirm your observations by executing the SHOW ERRORS PACKAGE command for
the TEST_PKG.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

A

Practice Solutions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-2

Practice I: Solutions

1. Launch iSQL*Plus using the icon provided on your desktop.

a. Log in to the database by using the username and database connect string details provided
by your instructor (optionally, write the information here for your records):
Username: ora__
Password: ora__
Database Connect String/Tnsname: t1

b. Execute basic SELECT statements to query the data in the DEPARTMENTS,
EMPLOYEES, and JOBS tables. Take a few minutes to familiarize yourself with
the data, or consult Appendix B, which provides a description and some data from
each table in the Human Resources schema.

SELECT * FROM departments;
SELECT * FROM employees;

2. Create a procedure called HELLO to display the text Hello World.

a. Create a procedure called HELLO.

b. In the executable section, use the DBMS_OUTPUT.PUT_LINE procedure to print
Hello World, and save the code in the database.
Note: If you get compile-time errors, then edit the PL/SQL to correct the code, and
replace the CREATE keyword with the text CREATE OR REPLACE.

CREATE PROCEDURE hello IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello World');
END;
/

Procedure created.

c. Execute the SET SERVEROUTPUT ON command to ensure that the output from
the DBMS_OUTPUT.PUT_LINE procedure will be displayed in iSQL*Plus.

SET SERVEROUTPUT ON

d. Create an anonymous block to invoke the stored procedure.

BEGIN
 hello;
END;
/

Hello World
PL/SQL procedure successfully completed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-3

Practice I: Solutions (continued)

3. Create a function called TOTAL_SALARY to compute the sum of all employee salaries.

a. Create a function called TOTAL_SALARY that returns a NUMBER.

b. In the executable section, execute a query to store the total salary of all employees in a
local variable that you declare in the declaration section. Return the value stored in the
local variable. Compile the code.

CREATE FUNCTION total_salary RETURN NUMBER IS
 total employees.salary%type;
BEGIN
 SELECT SUM(salary) INTO total
 FROM employees;
 RETURN total;
END;
/

Function created.

c. Use an anonymous block to invoke the function. To display the result computed by the
function, use the DBMS_OUTPUT.PUT_LINE procedure.
Hint: Either nest the function call inside the DBMS_OUTPUT.PUT_LINE parameter, or
store the function result in a local variable of the anonymous block and use the local
variable in the DBMS_OUTPUT.PUT_LINE procedure.

DECLARE
 total number := total_salary;
BEGIN
 DBMS_OUTPUT.PUT_LINE('Total Salary: '|| total);
END;
/
-- OR ...
BEGIN
 DBMS_OUTPUT.PUT_LINE('Total Salary: '|| total_salary);
END;
/

Total Salary: 691400
PL/SQL procedure successfully completed.

Total Salary: 691400
PL/SQL procedure successfully completed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-4

Practice I: Solutions (continued)

If you have time, complete the following exercise:
4. Launch SQL*Plus using the icon that is provided on your desktop.

a. Invoke the procedure and function that you created in exercises 2 and 3.

SET SERVEROUTPUT ON
EXECUTE hello;

Hello World
PL/SQL procedure successfully completed.

EXECUTE DBMS_OUTPUT.PUT_LINE('Total Salary: '|| total_salary);

Total Salary: 691400
PL/SQL procedure successfully completed.

b. Create a new procedure called HELLO_AGAIN to print Hello World again.

CREATE PROCEDURE hello_again IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello World again');
END;
/

Procedure created.

c. Invoke the HELLO_AGAIN procedure with an anonymous block.

SET SERVEROUTPUT ON
BEGIN
 hello_again;
END;
/

Hello World again
PL/SQL procedure successfully completed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-5

Practice 1: Solutions
Note: You can find table descriptions and sample data in Appendix B, “Table Descriptions and
Data.” Click the Save Script button to save your subprograms as .sql files in your local file
system.
Remember to enable SERVEROUTPUT if you have previously disabled it.

1. Create and invoke the ADD_JOB procedure and consider the results.

a. Create a procedure called ADD_JOB to insert a new job into the JOBS table. Provide the
ID and title of the job using two parameters.

CREATE OR REPLACE PROCEDURE add_job (
 jobid jobs.job_id%TYPE,
 jobtitle jobs.job_title%TYPE) IS
BEGIN
 INSERT INTO jobs (job_id, job_title)
 VALUES (jobid, jobtitle);
 COMMIT;
END add_job;
/

Procedure created.

b. Compile the code, and invoke the procedure with IT_DBA as job ID and Database
Administrator as job title. Query the JOBS table to view the results.

EXECUTE add_job ('IT_DBA', 'Database Administrator')
SELECT * FROM jobs WHERE job_id = 'IT_DBA';

PL/SQL Procedure Successfully Completed.

c. Invoke your procedure again, passing a job ID of ST_MAN and a job title of Stock
Manager. What happens and why?

EXECUTE add_job ('ST_MAN', 'Stock Manager')

BEGIN add_job ('ST_MAN', 'Stock Manager'); END;

*

ERROR at line 1:
ORA-00001: unique constraint (ORA1.JOB_ID_PK) violated
ORA-06512: at "ORA1.ADD_JOB", line 5
ORA-06512: at line 1

 An exception occurs because there is a primary key integrity constraint on the JOB_ID
column.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-6

Practice 1: Solutions (continued)

2. Create a procedure called UPD_JOB to modify a job in the JOBS table.

a. Create a procedure called UPD_JOB to update the job title. Provide the job ID and a new
title using two parameters. Include the necessary exception handling if no update occurs.

CREATE OR REPLACE PROCEDURE upd_job(
 jobid IN jobs.job_id%TYPE,
 jobtitle IN jobs.job_title%TYPE) IS
BEGIN
 UPDATE jobs
 SET job_title = jobtitle
 WHERE job_id = jobid;
 IF SQL%NOTFOUND THEN
 RAISE_APPLICATION_ERROR(-20202, 'No job updated.');
 END IF;
END upd_job;
/

Procedure created.

b. Compile the code; invoke the procedure to change the job title of the job ID IT_DBA to
Data Administrator. Query the JOBS table to view the results.

EXECUTE upd_job ('IT_DBA', 'Data Administrator')
SELECT * FROM jobs WHERE job_id = 'IT_DBA';

PL/SQL Procedure Successfully Completed.

 Also check the exception handling by trying to update a job that does not exist. (You can
use the job ID IT_WEB and the job title Web Master.)

EXECUTE upd_job ('IT_WEB', 'Web Master')

BEGIN upd_job ('IT_WEB', 'Web Master'); END;

*

ERROR at line 1:
ORA-20202: No job updated.
ORA-06512: at "ORA1.UPD_JOB", line 9
ORA-06512: at line 1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-7

Practice 1: Solutions (continued)

3. Create a procedure called DEL_JOB to delete a job from the JOBS table.

a. Create a procedure called DEL_JOB to delete a job. Include the necessary exception
handling if no job is deleted.

CREATE OR REPLACE PROCEDURE del_job (jobid jobs.job_id%TYPE) IS
BEGIN
 DELETE FROM jobs
 WHERE job_id = jobid;
 IF SQL%NOTFOUND THEN
 RAISE_APPLICATION_ERROR(-20203, 'No jobs deleted.');
 END IF;
END DEL_JOB;
/

Procedure created.

b. Compile the code; invoke the procedure using job ID IT_DBA. Query the JOBS table
to view the results.

EXECUTE del_job ('IT_DBA')
SELECT * FROM jobs WHERE job_id = 'IT_DBA';

PL/SQL procedure successfully completed.

no rows selected

 Also, check the exception handling by trying to delete a job that does not exist. (Use the
IT_WEB job ID.) You should get the message that you used in the exception-handling
section of the procedure as output.

EXECUTE del_job ('IT_WEB')

BEGIN del_job ('IT_WEB'); END;

*

ERROR at line 1:
ORA-20203: No jobs deleted.
ORA-06512: at "ORA1.DEL_JOB", line 6
ORA-06512: at line 1

4. Create a procedure called GET_EMPLOYEE to query the EMPLOYEES table, retrieving the
salary and job ID for an employee when provided with the employee ID.

a. Create a procedure that returns a value from the SALARY and JOB_ID columns for a
specified employee ID. Compile the code and remove the syntax errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-8

Practice 1: Solutions (continued)
CREATE OR REPLACE PROCEDURE get_employee
 (empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
END get_employee;
/

Procedure created.

b. Execute the procedure using host variables for the two OUT parameters, one for the salary
and the other for the job ID. Display the salary and job ID for employee ID 120.

VARIABLE salary NUMBER
VARIABLE job VARCHAR2(15)
EXECUTE get_employee(120, :salary, :job)
PRINT salary job

PL/SQL procedure successfully completed.

c. Invoke the procedure again, passing an EMPLOYEE_ID of 300. What happens and why?

EXECUTE get_employee(300, :salary, :job)

BEGIN get_employee(300, :salary, :job); END;

*

ERROR at line 1:
ORA-01403: no data found
ORA-06512: at "ORA1.GET_EMPLOYEE", line 6
ORA-06512: at line 1

There is no employee in the EMPLOYEES table with an EMPLOYEE_ID of 300. The
SELECT statement retrieved no data from the database, resulting in a fatal PL/SQL
error: NO_DATA_FOUND.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-9

Practice 2: Solutions

1. Create and invoke the GET_JOB function to return a job title.

a. Create and compile a function called GET_JOB to return a job title.
CREATE OR REPLACE FUNCTION get_job (jobid IN jobs.job_id%type)
RETURN jobs.job_title%type IS
 title jobs.job_title%type;
BEGIN
 SELECT job_title
 INTO title
 FROM jobs
 WHERE job_id = jobid;
 RETURN title;
END get_job;
/

Function created.

b. Create a VARCHAR2 host variable called TITLE, allowing a length of 35
characters. Invoke the function with SA_REP job ID to return the value in the host
variable. Print the host variable to view the result.

VARIABLE title VARCHAR2(35)
EXECUTE :title := get_job ('SA_REP');
PRINT title

PL/SQL procedure successfully completed.

2. Create a function called GET_ANNUAL_COMP to return the annual salary computed from an
employee’s monthly salary and commission passed as parameters.

a. Develop and store the function GET_ANNUAL_COMP, accepting parameter values for
monthly salary and commission. Either or both values passed can be NULL, but the
function should still return a non-NULL annual salary. Use the following basic formula to
calculate the annual salary:
 (salary*12) + (commission_pct*salary*12)

CREATE OR REPLACE FUNCTION get_annual_comp(
 sal IN employees.salary%TYPE,
 comm IN employees.commission_pct%TYPE)
 RETURN NUMBER IS
BEGIN
 RETURN (NVL(sal,0) * 12 + (NVL(comm,0) * nvl(sal,0) * 12));
END get_annual_comp;
/

Function created.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-10

Practice 2: Solutions (continued)

b. Use the function in a SELECT statement against the EMPLOYEES table for employees in
department 30.

SELECT employee_id, last_name,
 get_annual_comp(salary,commission_pct) "Annual Compensation"
FROM employees
WHERE department_id=30
/

3. Create a procedure, ADD_EMPLOYEE, to insert a new employee into the EMPLOYEES table.
The procedure should call a VALID_DEPTID function to check whether the department ID
specified for the new employee exists in the DEPARTMENTS table.

a. Create a function VALID_DEPTID to validate a specified department ID and return a
BOOLEAN value of TRUE if the department exists.

CREATE OR REPLACE FUNCTION valid_deptid(
 deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
BEGIN
 SELECT 1
 INTO dummy
 FROM departments
 WHERE department_id = deptid;
 RETURN TRUE;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;
/

Function created.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-11

Practice 2: Solutions (continued)

b. Create the ADD_EMPLOYEE procedure to add an employee to the EMPLOYEES table.
The row should be added to the EMPLOYEES table if the VALID_DEPTID function
returns TRUE; otherwise, alert the user with an appropriate message. Provide the
following parameters (with defaults specified in parentheses): first_name,
last_name, email, job (SA_REP), mgr (145), sal (1000), comm (0), and deptid
(30). Use the EMPLOYEES_SEQ sequence to set the employee_id column, and set
hire_date to TRUNC(SYSDATE).

CREATE OR REPLACE PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID. Try again.');
 END IF;
END add_employee;
/

Procedure created.

c. Call ADD_EMPLOYEE for the name Jane Harris in department 15, leaving other
parameters with their default values. What is the result?

Note: If the database server time is not between 8:00 and 18:00, the Secure_employees
trigger will be fired on performing any DML operation on the EMPLOYEES table. Disable
the aforesaid trigger to overcome this problem.

EXECUTE add_employee('Jane', 'Harris', 'JAHARRIS', deptid=> 15)

BEGIN add_employee('Jane', 'Harris', 'JAHARRIS', deptid=> 15); END;

*

ERROR at line 1:
ORA-20204: Invalid department ID. Try again.
ORA-06512: at "ORA1.ADD_EMPLOYEE", line 17
ORA-06512: at line 1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-12

Practice 2: Solutions (continued)

d. Add another employee named Joe Harris in department 80, leaving the remaining
parameters with their default values. What is the result?

EXECUTE add_employee('Joe', 'Harris', 'JAHARRIS', deptid=> 80)

PL/SQL procedure successfully completed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-13

Practice 3: Solutions

1. Create a package specification and body called JOB_PKG, containing a copy of your
ADD_JOB, UPD_JOB, and DEL_JOB procedures, as well as your GET_JOB function.
Tip: Consider saving the package specification and body in two separate files (for example,
p3q1_s.sql and p3q1_b.sql for the package specification and body, respectively).
Include a SHOW ERRORS statement after the CREATE PACKAGE statement in each file.
Alternatively, place all code in one file.
Note: Use the code in your previously saved script files when creating the package.

a. Create the package specification including the procedures and function headings as
public constructs.

CREATE OR REPLACE PACKAGE job_pkg IS
 PROCEDURE add_job (jobid jobs.job_id%TYPE, jobtitle
jobs.job_title%TYPE);
 PROCEDURE del_job (jobid jobs.job_id%TYPE);
 FUNCTION get_job (jobid IN jobs.job_id%type) RETURN
jobs.job_title%type;
 PROCEDURE upd_job(jobid IN jobs.job_id%TYPE, jobtitle IN
jobs.job_title%TYPE);
END job_pkg;
/
SHOW ERRORS

Package created.

No errors.

Note: Consider whether you still need the stand-alone procedures and functions you just
packaged.

b. Create the package body with the implementations for each of the subprograms.

CREATE OR REPLACE PACKAGE BODY job_pkg IS
 PROCEDURE add_job (
 jobid jobs.job_id%TYPE,
 jobtitle jobs.job_title%TYPE) IS
 BEGIN
 INSERT INTO jobs (job_id, job_title)
 VALUES (jobid, jobtitle);
 COMMIT;
 END add_job;

 PROCEDURE del_job (jobid jobs.job_id%TYPE) IS
 BEGIN
 DELETE FROM jobs
 WHERE job_id = jobid;
 IF SQL%NOTFOUND THEN
 RAISE_APPLICATION_ERROR(-20203, 'No jobs deleted.');
 END IF;
 END DEL_JOB;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-14

Practice 3: Solutions (continued)

 FUNCTION get_job (jobid IN jobs.job_id%type)
 RETURN jobs.job_title%type IS
 title jobs.job_title%type;
 BEGIN
 SELECT job_title
 INTO title
 FROM jobs
 WHERE job_id = jobid;
 RETURN title;
 END get_job;

 PROCEDURE upd_job(
 jobid IN jobs.job_id%TYPE,
 jobtitle IN jobs.job_title%TYPE) IS
 BEGIN
 UPDATE jobs
 SET job_title = jobtitle
 WHERE job_id = jobid;
 IF SQL%NOTFOUND THEN
 RAISE_APPLICATION_ERROR(-20202, 'No job updated.');
 END IF;
 END upd_job;

END job_pkg;
/
SHOW ERRORS

Package body created.

No errors.

c. Invoke your ADD_JOB package procedure by passing the values IT_SYSAN and
Systems Analyst as parameters.

EXECUTE job_pkg.add_job('IT_SYSAN', 'Systems Analyst')

PL/SQL procedure successfully completed.

d. Query the JOBS table to see the result.

SELECT *
FROM jobs
WHERE job_id = 'IT_SYSAN';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-15

Practice 3: Solutions (continued)

2. Create and invoke a package that contains private and public constructs.

a. Create a package specification and package body called EMP_PKG that contains your
ADD_EMPLOYEE and GET_EMPLOYEE procedures as public constructs, and include
your VALID_DEPTID function as a private construct.

Package specification:

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
END emp_pkg;
/
SHOW ERRORS

Package created.

No errors.

Package body:

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO dummy
 FROM departments
 WHERE department_id = deptid;
 RETURN TRUE;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;
 -- ...

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-16

Practice 3: Solutions (continued)

Package body (continued):

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;
END emp_pkg;
/
SHOW ERRORS

Package body created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-17

Practice 3: Solutions (continued)

b. Invoke the EMP_PKG.GET_EMPLOYEE procedure, using department ID 15 for
employee Jane Harris with e-mail JAHARRIS. Because department ID 15 does not
exist, you should get an error message as specified in the exception handler of your
procedure.

EXECUTE emp_pkg.add_employee('Jane', 'Harris','JAHARRIS', deptid => 15)

BEGIN emp_pkg.add_employee('Jane', 'Harris','JAHARRIS', deptid => 15);
END;

*

ERROR at line 1:
ORA-20204: Invalid department ID. Try again.
ORA-06512: at "ORA1.EMP_PKG", line 31
ORA-06512: at line 1

c. Invoke the GET_EMPLOYEE package procedure by using department ID 80 for
employee David Smith with e-mail DASMITH.

EXECUTE emp_pkg.add_employee('David', 'Smith','DASMITH', deptid => 80)

PL/SQL procedure successfully completed.

Note: If you are using SQL Developer, your compile time errors are displayed in the Message
Log. If you are using SQL*Plus or iSQL*Plus to create your stored code, use the SQL*Plus
SHOW ERRORS to view compile errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-18

Practice 4: Solutions

1. Copy and modify the code for the EMP_PKG package that you created in Practice 3,
Exercise 2, and overload the ADD_EMPLOYEE procedure.

a. In the package specification, add a new procedure called ADD_EMPLOYEE, which
accepts three parameters: the first name, last name, and department ID. Compile the
changes.

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
END emp_pkg;
/
SHOW ERRORS

Package created.

No errors.

b. Implement the new ADD_EMPLOYEE procedure in the package body so that it
formats the e-mail address in uppercase characters, using the first letter of the first name
concatenated with the first seven letters of the last name. The procedure should call the
existing ADD_EMPLOYEE procedure to perform the actual INSERT operation using its
parameters and formatted e-mail to supply the values. Compile the changes.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO dummy
 FROM departments
 WHERE department_id = deptid;
 RETURN TRUE;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-19

Practice 4: Solutions (continued)
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;
END emp_pkg;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-20

Practice 4: Solutions (continued)

c. Invoke the new ADD_EMPLOYEE procedure using the name Samuel Joplin to be
added to department 30.

EXECUTE emp_pkg.add_employee('Samuel', 'Joplin', 30)

PL/SQL procedure successfully completed.

2. In the EMP_PKG package, create two overloaded functions called GET_EMPLOYEE.

a. In the specification, add a GET_EMPLOYEE function that accepts the parameter called
emp_id based on the employees.employee_id%TYPE type, and a second
GET_EMPLOYEE function that accepts a parameter called family_name of the
employees.last_name%TYPE type. Both functions should return an
EMPLOYEES%ROWTYPE. Compile the changes.

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
END emp_pkg;
/
SHOW ERRORS

Package created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-21

Practice 4: Solutions (continued)

b. In the package body, implement the first GET_EMPLOYEE function to query an
employee by his or her ID, and the second to use the equality operator on the value
supplied in the family_name parameter. Compile the changes.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO dummy
 FROM departments
 WHERE department_id = deptid;
 RETURN TRUE;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id, manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-22

Practice 4: Solutions (continued)
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

END emp_pkg;
/
SHOW ERRORS

Package body created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-23

Practice 4: Solutions (continued)

c. Add a utility procedure PRINT_EMPLOYEE to the package that accepts an
EMPLOYEES%ROWTYPE as a parameter and displays the department_id,
employee_id, first_name, last_name, job_id, and salary for an employee
on one line, using DBMS_OUTPUT. Compile the changes.

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE print_employee(emprec employees%rowtype);
END emp_pkg;
/
SHOW ERRORS

Prackage created.

No Errors.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO dummy
 FROM departments
 WHERE department_id = deptid;
 RETURN TRUE;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-24

Practice 4: Solutions (continued)
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-25

Practice 4: Solutions (continued)
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;
END emp_pkg;
/
SHOW ERRORS

Package body created.

No errors.

d. Use an anonymous block to invoke the EMP_PKG.GET_EMPLOYEE function with an
employee ID of 100, and family name of 'Joplin'. Use the PRINT_EMPLOYEE
procedure to display the results for each row returned.

BEGIN
 emp_pkg.print_employee(emp_pkg.get_employee(100));
 emp_pkg.print_employee(emp_pkg.get_employee('Joplin'));
END;
/

90 100 Steven King AD_PRES 24000
30 209 Samuel Joplin SA_REP 1000

PL/SQL procedure successfully completed.

Note: The employee ID 209 for Samuel Joplin is allocated by using an Oracle
sequence object. You may receive a different value when you execute the PL/SQL block
shown in this solution.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-26

Practice 4: Solutions (continued)

3. Because the company does not frequently change its departmental data, you improve
performance of your EMP_PKG by adding a public procedure INIT_DEPARTMENTS to
populate a private PL/SQL table of valid department IDs. Modify the VALID_DEPTID
function to use the private PL/SQL table contents to validate department ID values.

a. In the package specification, create a procedure called INIT_DEPARTMENTS with no
parameters.

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE init_departments;
 PROCEDURE print_employee(emprec employees%rowtype);
END emp_pkg;
/
SHOW ERRORS

Package created.

No errors.

b. In the package body, implement the INIT_DEPARTMENTS procedure to store all
department IDs in a private PL/SQL index-by table named valid_departments
containing BOOLEAN values. Use the department_id column value as the index to
create the entry in the index-by table to indicate its presence, and assign the entry a value
of TRUE. Declare the valid_departments variable and its type definition
boolean_tabtype before all procedures in the body.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-27

Practice 4: Solutions (continued)
CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 ...
 END valid_deptid;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 ...
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 ...
 END;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 ...
 END get_employee;

 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 ...
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-28

Practice 4: Solutions (continued)
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;
END emp_pkg;
/
SHOW ERRORS

Package body created.

No errors.

c. In the body, create an initialization block that calls the INIT_DEPARTMENTS procedure
to initialize the table. Compile the changes.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 ...
 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;
BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS
Package body created.

No errors

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-29

Practice 4: Solutions (continued)

4. Change the VALID_DEPTID validation processing to use the private PL/SQL table of
department IDs.

a. Modify VALID_DEPTID to perform its validation by using the PL/SQL table of
department ID values. Compile the changes.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;
 ...

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;
BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Package body created.

No errors.

b. Test your code by calling ADD_EMPLOYEE using the name James Bond in
department 15. What happens?

EXECUTE emp_pkg.add_employee('James', 'Bond', 15)

BEGIN emp_pkg.add_employee('James', 'Bond', 15); END;

*
ERROR at line 1:
ORA-20204: Invalid department ID. Try again.
ORA-06512: at "ORA1.EMP_PKG", line 32
ORA-06512: at "ORA1.EMP_PKG", line 43
ORA-06512: at line 1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-30

Practice 4: Solutions (continued)

The insert operation to add the employee fails with an exception, because
department 15 does not exist.

c. Insert a new department with ID 15 and name Security, and commit the changes.

INSERT INTO departments (department_id, department_name)
VALUES (15, 'Security');
COMMIT;

1 row created.

Commit complete.

d. Test your code again, by calling ADD_EMPLOYEE using the name James Bond in
department 15. What happens?

EXECUTE emp_pkg.add_employee('James', 'Bond', 15)

BEGIN emp_pkg.add_employee('James', 'Bond', 15); END;

*
ERROR at line 1:
ORA-20204: Invalid department ID. Try again.
ORA-06512: at "ORA1.EMP_PKG", line 32
ORA-06512: at "ORA1.EMP_PKG", line 43
ORA-06512: at line 1

The insert operation to add the employee fails with an exception because
department 15 does not exist as an entry in the PL/SQL index-by table package state
variable.

e. Execute the EMP_PKG.INIT_DEPARTMENTS procedure to update the internal PL/SQL
table with the latest departmental data.

EXECUTE EMP_PKG.INIT_DEPARTMENTS

PL/SQL procedure successfully completed.

f. Test your code by calling ADD_EMPLOYEE using the employee name James Bond,
who works in department 15. What happens?

EXECUTE emp_pkg.add_employee('James', 'Bond', 15)

PL/SQL procedure successfully completed.

The row is finally inserted because the department 15 record exists in the database
and package PL/SQL index-by table due to invoking
EMP_PKG.INIT_DEPARTMENTS, which refreshes the package state data.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-31

Practice 4: Solutions (continued)
g. Delete employee James Bond and department 15 from their respective tables,

commit the changes, and refresh the department data by invoking the
EMP_PKG.INIT_DEPARTMENTS procedure.

DELETE FROM employees
WHERE first_name = James AND last_name = Bond;
DELETE FROM departments WHERE department_id = 15;
COMMIT;
EXECUTE EMP_PKG.INIT_DEPARTMENTS

1 row deleted.
1 row deleted.
Commit complete.
PL/SQL procedure successfully completed.

5. Reorganize the subprograms in the package specification body so that they are in
alphabetical sequence.

a. Edit the package specification and reorganize subprograms alphabetically. In iSQL*Plus,
load and compile the package specification. What happens?

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE init_departments;
 PROCEDURE print_employee(emprec employees%rowtype);
END emp_pkg;
/
SHOW ERRORS

It compiles successfully.
Note: The package may already have its subprograms in alphabetical sequence.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-32

Practice 4: Solutions (continued)

b. Edit the package body and reorganize all subprograms alphabetically. In iSQL*Plus, load
and compile the package specification. What happens?

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID. Try
again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-33

Practice 4: Solutions (continued)
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-34

Practice 4: Solutions (continued)
BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Warning: Package Body created with compilation errors.

Errors for PACKAGE BODY EMP_PKG:

LINE/COL ERROR
-------- ---
16/5 PL/SQL: Statement ignored
16/8 PLS-00313: 'VALID_DEPTID' not declared in this scope

It does not compile successfully because the VALID_DEPTID function is referenced
before it is declared.

c. Fix the compilation error by using a forward declaration in the body for the offending
subprogram reference. Load and re-create the package body. What happens? Save the
package code in a script file.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;
 ...

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-35

Practice 4: Solutions (continued)

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Package body created.

No errors.

A forward declaration for the VALID_DEPTID function enables the package body
to be compiled successfully.

If you have time, complete the following exercise:

6. Wrap the EMP_PKG package body and re-create it.

a. Query the data dictionary to view the source for the EMP_PKG body.

SELECT text
FROM user_source
WHERE name = 'EMP_PKG'
AND type = 'PACKAGE BODY'
ORDER BY line;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-36

Practice 4: Solutions (continued)

b. Start a command window and execute the WRAP command-line utility to wrap the body
of the EMP_PKG package. Give the output file name a .plb extension.
Hint: Copy the file (which you saved in step 5c) containing the package body to a file
called emp_pkg_b.sql.

WRAP INAME=emp_pkg_b.sql

PL/SQL Wrapper: Release 10.2.0.1.0- Production on Tue Nov 14 03:49:53
2006

Copyright (c) 1993, 2004,Oracle. All Rights Reserved.

Processing emp_pkg_b.sql to emp_pkg_b.plb

c. Using iSQL*Plus, load and execute the .plb file containing the wrapped source.

CREATE OR REPLACE PACKAGE BODY emp_pkg wrapped
0
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
 :
 :
be 4 0
67 3 0
15 2 0
133 6 0
5 1 0
5d 3 0
193 1 8
0

/
SHOW ERRORS

Package body created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-37

Practice 4: Solutions (continued)

d. Query the data dictionary to display the source for the EMP_PKG package body again.
Are the original source code lines readable?

SELECT text
FROM user_source
WHERE name = 'EMP_PKG'
AND type = 'PACKAGE BODY'
ORDER BY line;

The source code for the body is no longer readable. You can view the wrapped
source, but the orginal source code is not shown. For this reason, make sure you
always have a secure copy of your source code in files outside the database when
using the WRAP utility.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-38

Practice 5: Solutions

1. Create a procedure called EMPLOYEE_REPORT that generates an employee report in a file
in the operating system, using the UTL_FILE package. The report should generate a list of
employees who have exceeded the average salary of their department.

a. Your program should accept two parameters. The first parameter is the output
directory. The second parameter is the name of the text file that is written.
Note: Use the directory location value UTL_FILE. Add an exception-handling section to
handle errors that may be encountered when using the UTL_FILE package.

The following is a sample output from the report file:

 Employees who earn more than average salary:
 REPORT GENERATED ON 26-FEB-04
 Hartstein 20 $13,000.00
 Raphaely 30 $11,000.00
 Marvis 40 $6,500.00
 ...
 *** END OF REPORT ***

CREATE OR REPLACE PROCEDURE employee_report(
 dir IN VARCHAR2, filename IN VARCHAR2) IS
 f UTL_FILE.FILE_TYPE;
 CURSOR avg_csr IS
 SELECT last_name, department_id, salary
 FROM employees outer
 WHERE salary > (SELECT AVG(salary)
 FROM employees inner
 GROUP BY outer.department_id)
 ORDER BY department_id;
BEGIN
 f := UTL_FILE.FOPEN(dir, filename,'w');
 UTL_FILE.PUT_LINE(f, 'Employees who earn more than average salary: ');
 UTL_FILE.PUT_LINE(f, 'REPORT GENERATED ON ' ||SYSDATE);
 UTL_FILE.NEW_LINE(f);
 FOR emp IN avg_csr
 LOOP
 UTL_FILE.PUT_LINE(f,
 RPAD(emp.last_name, 30) || ' ' ||
 LPAD(NVL(TO_CHAR(emp.department_id,'9999'),'-'), 5) || ' ' ||
 LPAD(TO_CHAR(emp.salary, '$99,999.00'), 12));
 END LOOP;
 UTL_FILE.NEW_LINE(f);
 UTL_FILE.PUT_LINE(f, '*** END OF REPORT ***');
 UTL_FILE.FCLOSE(f);
END employee_report;
/

Procedure created.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-39

Practice 5: Solutions (continued)

b. Invoke the program, using the second parameter with a name such as sal_rptxx.txt,
where xx represents your user number (for example, 01, 15, and so on).

EXECUTE employee_report('UTL_FILE','sal_rpt01.txt')

PL/SQL Procedure sucessfully completed.

Note: The data displays the employee’s last name, department ID, and salary.
Ask your instructor to provide instructions on how to obtain the report file from the
server using the Putty PSFTP utility.

After you use PSTFP to retrieve your generated file, it should contain something
similar to the following example:

Employees who earn more than average salary:
REPORT GENERATED ON 16-FEB-04

Hartstein 20 $13,000.00
Raphaely 30 $11,000.00
Mavris 40 $6,500.00
Weiss 50 $8,000.00
Kaufling 50 $7,900.00
Fripp 50 $8,200.00
Vollman 50 $6,500.00
Hunold 60 $9,000.00
Baer 70 $10,000.00
Russell 80 $14,000.00
Bernstein 80 $9,500.00
Olsen 80 $8,000.00
 :
 :
Errazuriz 80 $12,000.00
Zlotkey 80 $10,500.00
Cambrault 80 $11,000.00
King 90 $24,000.00
Kochhar 90 $17,000.00
De Haan 90 $17,000.00
Greenberg 100 $12,000.00
Faviet 100 $9,000.00
Chen 100 $8,200.00
Sciarra 100 $7,700.00
Urman 100 $7,800.00
Popp 100 $6,900.00
Higgins 110 $12,000.00
Gietz 110 $8,300.00
Grant - $7,000.00

*** END OF REPORT ***

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-40

Practice 5: Solutions (continued)

2. Create a new procedure called WEB_EMPLOYEE_REPORT that generates the same data as
the EMPLOYEE_REPORT.

a. First, execute SET SERVEROUTPUT ON, and then execute htp.print('hello')
followed by executing OWA_UTIL.SHOWPAGE. The exception messages generated can
be ignored.

SET SERVEROUTPUT ON
EXECUTE HTP.PRINT('hello')
EXECUTE OWA_UTIL.SHOWPAGE

BEGIN htp.print('hello'); END;

*

ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at "SYS.OWA_UTIL", line 325
ORA-06512: at "SYS.HTP", line 1322
ORA-06512: at "SYS.HTP", line 1397
ORA-06512: at "SYS.HTP", line 1684
ORA-06512: at line 1
PL/SQL procedure successfully completed.

These steps are performed to ensure that the messages are not generated again.
However, remember that the HTP package is intended to be used in the Oracle
HTTP Server context, not iSQL*Plus.

b. Write the WEB_EMPLOYEE_REPORT procedure using the HTP package to
generate an HTML report of employees with a salary greater than the average for their
departments. If you know HTML, create an HTML table; otherwise, create simple lines
of data.
Hint: Copy the cursor definition and the FOR loop from the EMPLOYEE_REPORT
procedure for the basic structure for your Web report.

CREATE OR REPLACE PROCEDURE web_employee_report IS
 CURSOR avg_csr IS
 SELECT last_name, department_id, salary
 FROM employees outer
 WHERE salary > (SELECT AVG(salary)
 FROM employees inner
 GROUP BY outer.department_id)
 ORDER BY department_id;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-41

Practice 5: Solutions (continued)
BEGIN
 htp.htmlopen;
 htp.headopen;
 htp.title('Employee Salary Report');
 htp.headclose;
 htp.bodyopen;
 htp.header(1, 'Employees who earn more than average salary');
 htp.print('REPORT GENERATED ON' || to_char(SYSDATE, 'DD-MON-YY'));
 htp.br;
 htp.hr;
 htp.tableOpen;
 htp.tablerowOpen;
 htp.tableHeader('Last Name');
 htp.tableHeader('Department');
 htp.tableHeader('Salary');
 htp.tablerowclose;

 FOR emp IN avg_csr
 LOOP
 htp.tablerowOpen;
 htp.tabledata(emp.last_name);
 htp.tabledata(NVL(TO_CHAR(emp.department_id,'9999'),'-'));
 htp.tabledata(TO_CHAR(emp.salary, '$99,999.00'));
 htp.tablerowclose;
 END LOOP;

 htp.tableclose;
 htp.hr;
 htp.print('*** END OF REPORT ***');
 htp.bodyclose;
 htp.htmlclose;
END web_employee_report;
/
show errors

Procedure created.

No errors.

c. Execute the procedure using iSQL*Plus to generate the HTML data into a server buffer,
and execute the OWA_UTIL.SHOWPAGE procedure to display contents of the buffer.
Remember that SERVEROUTPUT should be ON before you execute the code.

EXECUTE web_employee_report
EXECUTE owa_util.showpage

PL/SQL procedure successfully completed.

:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-42

Practice 5: Solutions (continued)
<HTML>
<HEAD>
<TITLE>Employee Salary Report</TITLE>
</HEAD>
<BODY>
<H1>Employees who earn more than average salary</H1>
REPORT GENERATED ON16-FEB-04

<HR>
<TABLE >
<TR>
<TH>Last Name</TH>
<TH>Department</TH>
<TH>Salary</TH>
</TR>
<TR>
<TD>Hartstein</TD>
<TD> 20</TD>
<TD> $13,000.00</TD>
</TR>
<TR>
<TD>Raphaely</TD>
<TD> 30</TD>
<TD> $11,000.00</TD>
</TR>
<TR>
<TD>Mavris</TD>
<TD> 40</TD>
<TD> $6,500.00</TD>
</TR>
<TR>
<TD>Weiss</TD>
<TD> 50</TD>
<TD> $8,000.00</TD>
</TR>
<TR>
<TD>Kaufling</TD>
<TD> 50</TD>
<TD> $7,900.00</TD>
</TR>
<TR>
<TD>Fripp</TD>
<TD> 50</TD>
<TD> $8,200.00</TD>
</TR>
<TR>
<TD>Vollman</TD>
<TD> 50</TD>
<TD> $6,500.00</TD>
</TR>

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-43

Practice 5: Solutions (continued)
<TR>
<TD>Hunold</TD>
<TD> 60</TD>
<TD> $9,000.00</TD>
</TR>
<TR>
<TD>Baer</TD>
<TD> 70</TD>
<TD> $10,000.00</TD>
</TR>
<TR> <TD>Russell</TD> <TD> 80</TD> <TD> $14,000.00</TD> </TR> <TR>
<TD>Bernstein</TD> <TD> 80</TD> <TD>
$9,500.00</TD> </TR> <TR> <TD>Olsen</TD> <TD> 80</TD> <TD> $8,000.00</TD>
</TR> <TR> <TD>Vishney</TD> <TD> 80</TD> <TD> $10,500.00</TD>
</TR> <TR> <TD>Sewall</TD> <TD> 80</TD> <TD> $7,000.00</TD> </TR> <TR>
<TD>Doran</TD> <TD> 80</TD> <TD>
$7,500.00</TD> </TR> <TR> <TD>Smith</TD> <TD> 80</TD> <TD> $8,000.00</TD>
</TR> <TR> <TD>McEwen</TD> <TD> 80</TD> <TD> $9,000.00</TD>
</TR> <TR> <TD>Sully</TD> <TD> 80</TD> <TD> $9,500.00</TD> </TR> <TR>
<TD>King</TD> <TD> 80</TD> <TD>
$10,000.00</TD> </TR> <TR> <TD>Tuvault</TD> <TD> 80</TD> <TD>
$7,000.00</TD> </TR> <TR> <TD>Cambrault</TD> <TD> 80</TD> <TD>
$7,500.00</TD>
</TR> <TR> <TD>Bates</TD> <TD> 80</TD> <TD> $7,300.00</TD> </TR> <TR>
<TD>Smith</TD> <TD> 80</TD> <TD>
$7,400.00</TD> </TR> <TR> <TD>Fox</TD> <TD> 80</TD> <TD> $9,600.00</TD>
</TR> <TR> <TD>Bloom</TD> <TD> 80</TD> <TD> $10,000.00</TD> </TR>
<TR> <TD>Ozer</TD> <TD> 80</TD> <TD> $11,500.00</TD> </TR> <TR>
<TD>Ande</TD> <TD> 80</TD> <TD> $6,400.00</TD> </TR> <TR> <TD>Lee</TD>
<TD>
80</TD> <TD> $6,800.00</TD> </TR> <TR> <TD>Marvins</TD> <TD> 80</TD> <TD>
$7,200.00</TD> </TR> <TR>
<TD>Greene</TD> <TD> 80</TD> <TD> $9,500.00</TD> </TR> <TR>
<TD>Livingston</TD> <TD> 80</TD> <TD> $8,400.00</TD> </TR> <TR>
<TD>Taylor</TD> <TD>
80</TD> <TD> $8,600.00</TD> </TR> <TR> <TD>Hutton</TD> <TD> 80</TD> <TD>
$8,800.00</TD> </TR>
<TR> <TD>Abel</TD> <TD> 80</TD> <TD> $11,000.00</TD> </TR> <TR>
<TD>Hall</TD> <TD> 80</TD> <TD> $9,000.00</TD> </TR> <TR> <TD>Tucker</TD>
<TD>
80</TD> <TD> $10,000.00</TD> </TR> <TR> <TD>Partners</TD> <TD> 80</TD>
<TD> $13,500.00</TD> </TR> <TR>
<TD>Errazuriz</TD> <TD> 80</TD> <TD> $12,000.00</TD> </TR> <TR>
<TD>Zlotkey</TD> <TD> 80</TD> <TD>
$10,500.00</TD> </TR> <TR> <TD>Cambrault</TD> <TD> 80</TD> <TD>
$11,000.00</TD> </TR> <TR> <TD>King</TD> <TD> 90</TD> <TD>
$24,000.00</TD> </TR>
<TR> <TD>Kochhar</TD> <TD> 90</TD> <TD> $17,000.00</TD> </TR> <TR> <TD>De
Haan</TD> <TD> 90</TD> <TD>
$17,000.00</TD> </TR> <TR> <TD>Greenberg</TD> <TD> 100</TD> <TD>
$12,000.00</TD> </TR>

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-44

Practice 5: Solutions (continued)
<TR> <TD>Faviet</TD> <TD> 100</TD> <TD> $9,000.00</TD>
</TR> <TR> <TD>Chen</TD> <TD> 100</TD> <TD> $8,200.00</TD> </TR> <TR>
<TD>Sciarra</TD> <TD> 100</TD> <TD>
$7,700.00</TD> </TR> <TR> <TD>Urman</TD> <TD> 100</TD> <TD>
$7,800.00</TD> </TR> <TR> <TD>Popp</TD> <TD> 100</TD> <TD> $6,900.00</TD>
</TR>
<TR> <TD>Higgins</TD> <TD> 110</TD> <TD> $12,000.00</TD> </TR> <TR>
<TD>Gietz</TD> <TD> 110</TD> <TD>
$8,300.00</TD> </TR> <TR> <TD>Grant</TD> <TD>-</TD> <TD> $7,000.00</TD>
</TR> </TABLE> <HR> *** END OF REPORT *** </BODY> </HTML>
PL/SQL procedure successfully completed.

d. Create an HTML file called web_employee_report.htm containing the output
result text that you select and copy from the opening <HTML> tag to the closing
</HTML> tag. Paste the copied text into the file and save it to disk. Double-click the file
to display the results in your default browser.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-45

Practice 5: Solutions (continued)
3. Your boss wants to run the employee report frequently. You create a procedure that uses the

DBMS_SCHEDULER package to schedule the EMPLOYEE_REPORT procedure for execution.
You should use parameters to specify a frequency, and an optional argument to specify the
number of minutes after which the scheduled job should be terminated.

a. Create a procedure called SCHEDULE_REPORT that provides the following two
parameters:
- interval to specify a string indicating the frequency of the scheduled job
- minutes to specify the total life in minutes (default of 10) for the scheduled job, after
which it is terminated. The code will divide the duration by the quantity (24 60) when
it is added to the current date and time to specify the termination time.

When the procedure creates a job, with the name of EMPSAL_REPORT by calling
DBMS_SCHEDULER.CREATE_JOB, the job should be enabled and scheduled for the
PL/SQL block to start immediately. You must schedule an anonymous block to invoke
the EMPLOYEE_REPORT procedure so that the file name can be updated with a new
time, each time the report is executed. EMPLOYEE_REPORT is given the directory name
supplied by your instructor for task 1, and the file name parameter is specified in the
following format:
sal_rptxx_hh24-mi-ss.txt, where xx is your assigned user number and
hh24-mi-ss represents the hours, minutes, and seconds

Use the following local PL/SQL variable to construct a PL/SQL block:

 plsql_block VARCHAR2(200) :=
 'BEGIN'||
 ' EMPLOYEE_REPORT(''UTL_FILE'','||
 '''sal_rptXX_''||to_char(sysdate,''HH24-MI-SS'')||''.txt'');'||
 'END;';

 This code is provided to help you because it is a nontrivial PL/SQL string to construct. In
the PL/SQL block, XX is your student number.

CREATE OR REPLACE PROCEDURE schedule_report(
 interval VARCHAR2, minutes NUMBER := 10) IS
 plsql_block VARCHAR2(200) :=
 'BEGIN'||
 ' EMPLOYEE_REPORT(''UTL_FILE'','||
 '''sal_rpt01_''||to_char(sysdate,''HH24-MI-SS'')||''.txt''); '||
 'END;';
BEGIN

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-46

Practice 5: Solutions (continued)
 DBMS_SCHEDULER.CREATE_JOB(
 job_name => 'EMPSAL_REPORT',
 job_type => 'PLSQL_BLOCK',
 job_action => plsql_block,
 start_date => SYSDATE,
 repeat_interval => interval,
 end_date => SYSDATE + minutes/(24*60),
 enabled => TRUE);
END;
/
SHOW ERRORS

Procedure created.

No errors.

b. Test the SCHEDULE_REPORT procedure by executing it with a parameter specifying a
frequency of every 2 minutes and a termination time 10 minutes after it starts.
Note: You will have to connect to the database server by using PSFTP to check whether
your files are created.

EXECUTE schedule_report('FREQUENCY=MINUTELY;INTERVAL=2', 10)

PL/SQL procedure successfully completed.

c. During and after the process, you can query job_name and enabled columns from the
USER_SCHEDULER_JOBS table to check whether the job still exists.

SELECT job_name, enabled
FROM user_scheduler_jobs;

 Note: This query should return no rows after 10 minutes have elapsed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-47

Practice 6: Solutions

1. Create a package called TABLE_PKG that uses Native Dynamic SQL to create or drop a
table, and to populate, modify, and delete rows from the table.

a. Create a package specification with the following procedures:
 PROCEDURE make(table_name VARCHAR2, col_specs VARCHAR2)
 PROCEDURE add_row(table_name VARCHAR2, col_values VARCHAR2,
 cols VARCHAR2 := NULL)
 PROCEDURE upd_row(table_name VARCHAR2, set_values VARCHAR2,
 conditions VARCHAR2 := NULL)
 PROCEDURE del_row(table_name VARCHAR2,
 conditions VARCHAR2 := NULL)
 PROCEDURE remove(table_name VARCHAR2)

Ensure that subprograms manage optional default parameters with NULL values.

CREATE OR REPLACE PACKAGE table_pkg IS
 PROCEDURE make(table_name VARCHAR2, col_specs VARCHAR2);
 PROCEDURE add_row(table_name VARCHAR2, col_values VARCHAR2,
 cols VARCHAR2 := NULL);
 PROCEDURE upd_row(table_name VARCHAR2, set_values VARCHAR2,
 conditions VARCHAR2 := NULL);
 PROCEDURE del_row(table_name VARCHAR2, conditions VARCHAR2 := NULL);
 PROCEDURE remove(table_name VARCHAR2);
END table_pkg;
/
SHOW ERRORS

Package created.

No errors.

b. Create the package body that accepts the parameters and dynamically constructs the
appropriate SQL statements that are executed using Native Dynamic SQL, except for the
remove procedure that should be written using the DBMS_SQL package.

CREATE OR REPLACE PACKAGE BODY table_pkg IS
 PROCEDURE execute(stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(stmt);
 EXECUTE IMMEDIATE stmt;
 END;

 PROCEDURE make(table_name VARCHAR2, col_specs VARCHAR2) IS
 stmt VARCHAR2(200) := 'CREATE TABLE '|| table_name ||
 ' (' || col_specs || ')';
 BEGIN
 execute(stmt);
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-48

Practice 6: Solutions (continued)
 PROCEDURE add_row(table_name VARCHAR2, col_values VARCHAR2,
 cols VARCHAR2 := NULL) IS
 stmt VARCHAR2(200) := 'INSERT INTO '|| table_name;
 BEGIN
 IF cols IS NOT NULL THEN
 stmt := stmt || ' (' || cols || ')';
 END IF;
 stmt := stmt || ' VALUES (' || col_values || ')';
 execute(stmt);
 END;

 PROCEDURE upd_row(table_name VARCHAR2, set_values VARCHAR2,
 conditions VARCHAR2 := NULL) IS
 stmt VARCHAR2(200) := 'UPDATE '|| table_name || ' SET ' ||
set_values;
 BEGIN
 IF conditions IS NOT NULL THEN
 stmt := stmt || ' WHERE ' || conditions;
 END IF;
 execute(stmt);
 END;

 PROCEDURE del_row(table_name VARCHAR2, conditions VARCHAR2 := NULL) IS
 stmt VARCHAR2(200) := 'DELETE FROM '|| table_name;
 BEGIN
 IF conditions IS NOT NULL THEN
 stmt := stmt || ' WHERE ' || conditions;
 END IF;
 execute(stmt);
 END;

 PROCEDURE remove(table_name VARCHAR2) IS
 csr_id INTEGER;
 stmt VARCHAR2(100) := 'DROP TABLE '||table_name;
 BEGIN
 csr_id := DBMS_SQL.OPEN_CURSOR;
 DBMS_OUTPUT.PUT_LINE(stmt);
 DBMS_SQL.PARSE(csr_id, stmt, DBMS_SQL.NATIVE);
 -- Parse executes DDL statements,no EXECUTE is required.
 DBMS_SQL.CLOSE_CURSOR(csr_id);
 END;

END table_pkg;
/
SHOW ERRORS

Package body created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-49

Practice 6: Solutions (continued)

c. Execute the package MAKE procedure to create a table as follows:

 make('my_contacts', 'id number(4), name varchar2(40)');

EXECUTE table_pkg.make('my_contacts', 'id number(4), name varchar2(40)')

PL/SQL procedure successfully completed.

d. Describe the MY_CONTACTS table structure.

DESCRIBE my_contacts

e. Execute the ADD_ROW package procedure to add the following rows:

add_row('my_contacts','1,''Geoff Gallus''','id, name');
add_row('my_contacts','2,''Nancy''','id, name');
add_row('my_contacts','3,''Sunitha Patel''','id,name');
add_row('my_contacts','4,''Valli Pataballa''','id,name');

BEGIN
 table_pkg.add_row('my_contacts','1,''Geoff Gallus''','id, name');
 table_pkg.add_row('my_contacts','2,''Nancy''','id, name');
 table_pkg.add_row('my_contacts','3,''Sunitha Patel''','id,name');
 table_pkg.add_row('my_contacts','4,''Valli Pataballa''','id,name');
END;
/

PL/SQL procedure successfully completed.

f. Query the MY_CONTACTS table contents.

SELECT *
FROM my_contacts;

g. Execute the DEL_ROW package procedure to delete a contact with ID value 1.

EXECUTE table_pkg.del_row('my_contacts', 'id=1')

PL/SQL procedure successfully completed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-50

Practice 6: Solutions (continued)

h. Execute the UPD_ROW procedure with following row data:

upd_row('my_contacts','name=''Nancy Greenberg''','id=2');

EXEC table_pkg.upd_row('my_contacts','name=''Nancy Greenberg''','id=2')

PL/SQL procedure successfully completed.

i. Select the data from the MY_CONTACTS table again to view the changes.

SELECT *
FROM my_contacts;

j. Drop the table by using the remove procedure and describe the MY_CONTACTS table.

EXECUTE table_pkg.remove('my_contacts')
DESCRIBE my_contacts

PL/SQL procedure successfully completed.

ERROR:
ORA-04043: object my_contacts does not exist

2. Create a COMPILE_PKG package that compiles the PL/SQL code in your schema.

a. In the specification, create a package procedure called MAKE that accepts the name of a
PL/SQL program unit to be compiled.

CREATE OR REPLACE PACKAGE compile_pkg IS
 PROCEDURE make(name VARCHAR2);
END compile_pkg;
/
SHOW ERRORS

Package created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-51

Practice 6: Solutions (continued)

b. In the body, the MAKE procedure should call a private function called GET_TYPE to
determine the PL/SQL object type from the data dictionary, and return the type name (use
PACKAGE for a package with a body) if the object exists; otherwise, it should return a
NULL. If the object exists, MAKE dynamically compiles it with the ALTER statement.

CREATE OR REPLACE PACKAGE BODY compile_pkg IS
 PROCEDURE execute(stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(stmt);
 EXECUTE IMMEDIATE stmt;
 END;

 FUNCTION get_type(name VARCHAR2) RETURN VARCHAR2 IS
 proc_type VARCHAR2(30) := NULL;
 BEGIN
 /*
 * The ROWNUM = 1 is added to the condition
 * to ensure only one row is returned if the
 * name represents a PACKAGE, which may also
 * have a PACKAGE BODY. In this case, we can
 * only compile the complete package, but not
 * the specification or body as separate
 * components.
 */
 SELECT object_type INTO proc_type
 FROM user_objects
 WHERE object_name = UPPER(name)
 AND ROWNUM = 1;
 RETURN proc_type;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN NULL;
 END;

 PROCEDURE make(name VARCHAR2) IS
 stmt VARCHAR2(100);
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 stmt := 'ALTER '|| proc_type ||' '|| name ||' COMPILE';
 execute(stmt);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Subprogram '''|| name ||''' does not exist');
 END IF;
 END make;
END compile_pkg;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-52

Practice 6: Solutions (continued)
Package body created.

No errors.

c. Use the COMPILE_PKG.MAKE procedure to compile the EMPLOYEE_REPORT
procedure, the EMP_PKG package, and a nonexistent object called EMP_DATA.

EXECUTE compile_pkg.make('employee_report')
EXECUTE compile_pkg.make('emp_pkg')
EXECUTE compile_pkg.make('emp_data')

ALTER PROCEDURE employee_report COMPILE
PL/SQL procedure successfully completed.

ALTER PACKAGE emp_pkg COMPILE
PL/SQL procedure successfully completed

BEGIN compile_pkg.make('emp_data'); END;

*

ERROR at line 1:
ORA-20001: Subprogram 'emp_data' does not exist
ORA-06512: at "ORA1.COMPILE_PKG", line 39
ORA-06512: at line 1

3. Add a procedure to the COMPILE_PKG that uses the DBMS_METADATA to obtain a DDL
statement that can regenerate a named PL/SQL subprogram, and writes the DDL to a file by
using the UTL_FILE package.

a. In the package specification, create a procedure called REGENERATE that accepts the
name of a PL/SQL component to be regenerated. Declare a public VARCHAR2 variable
called dir initialized with the directory alias value 'UTL_FILE'. Compile the
specification.

CREATE OR REPLACE PACKAGE compile_pkg IS
 dir VARCHAR2(100) := 'UTL_FILE';
 PROCEDURE make(name VARCHAR2);
 PROCEDURE regenerate(name VARCHAR2);
END compile_pkg;
/
SHOW ERRORS

Package created.

No errors.

 Note: Initialize the correct path name in the dir variable value for your course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-53

Practice 6: Solutions (continued)

b. In the package body, implement the REGENERATE procedure so that it uses the
GET_TYPE function to determine the PL/SQL object type from the supplied name. If the
object exists, then obtain the DDL used to create the component using the procedure
DBMS_METADATA.GET_DDL, which must be provided with the object name in
uppercase text.
Save the DDL statement in a file by using the UTL_FILE.PUT procedure. Write the file
in the directory path stored in the public variable called dir (from the specification).
Construct a file name (in lowercase characters) by concatenating the USER function, an
underscore, and the object name with a .sql extension. For example:
ora1_myobject.sql. Compile the body.

CREATE OR REPLACE PACKAGE BODY compile_pkg IS

 PROCEDURE execute(stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(stmt);
 EXECUTE IMMEDIATE stmt;
 END;

 FUNCTION get_type(name VARCHAR2) RETURN VARCHAR2 IS
 proc_type VARCHAR2(30) := NULL;
 BEGIN
 /*
 * The ROWNUM = 1 is added to the condition
 * to ensure only one row is returned if the
 * name represents a PACKAGE, which may also
 * have a PACKAGE BODY. In this case, we can
 * only compile the complete package, but not
 * the specification or body as separate
 * components.
 */
 SELECT object_type INTO proc_type
 FROM user_objects
 WHERE object_name = UPPER(name)
 AND ROWNUM = 1;
 RETURN proc_type;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN NULL;
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-54

Practice 6: Solutions (continued)
 PROCEDURE make(name VARCHAR2) IS
 stmt VARCHAR2(100);
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 stmt := 'ALTER '|| proc_type ||' '|| name ||' COMPILE';
 execute(stmt);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Subprogram '''|| name ||''' does not exist');
 END IF;
 END make;

 PROCEDURE regenerate (name VARCHAR2) IS
 file UTL_FILE.FILE_TYPE;
 filename VARCHAR2(100) := LOWER(USER ||'_'|| name ||'.sql');
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 file := UTL_FILE.FOPEN(dir, filename, 'w');
 UTL_FILE.PUT(file,
 DBMS_METADATA.GET_DDL(proc_type, UPPER(name)));
 UTL_FILE.FCLOSE(file);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Object with '''|| name ||''' does not exist');
 END IF;
 END regenerate;

END compile_pkg;
/
SHOW ERRORS

Package body created.

No errors.

c. Execute the COMPILE_PKG.REGENERATE procedure by using the name of the
TABLE_PKG created in the first task of this practice.

EXECUTE compile_pkg.regenerate('TABLE_PKG')

Note: If required, you can execute the following statement to set the directory for the file:

EXECUTE compile_pkg.dir := '<utl_file_dir>';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-55

Practice 6: Solutions (continued)

d. Use Putty FTP to get the generated file from the server to your local directory. Edit the
file to place a / terminator character at the end of a CREATE statement (if required). Cut
and paste the results into the iSQL*Plus buffer and execute the statement.

 Here is a sample Putty FTP session:

psftp> open esslin05
login as: teach7
Using username "teach7".
Password: ******
Remote working directory is /home1/teach7
psftp> cd UTL_FILE
Remote directory is now /home1/teach7/UTL_FILE
psftp> lcd E:\labs\PLPU\labs
New local directory is E:\labs\PLPU\labs
psftp> get ora1_emp_pkg.sql
remote:/home1/teach7/UTL_FILE/ora1_emp_pkg.sql => local:ora1_emp_pkg.sql
psftp> exit

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-56

Practice 7: Solutions

1. Update EMP_PKG with a new procedure to query employees in a specified department.

a. In the specification, declare a get_employees procedure, with its parameter called
dept_id based on the employees.department_id column type. Define an
index-by PL/SQL type as a TABLE OF EMPLOYEES%ROWTYPE.

CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE emp_tabtype IS TABLE OF employees%ROWTYPE;
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE get_employees(dept_id employees.department_id%type);
 PROCEDURE init_departments;
 PROCEDURE print_employee(emprec employees%rowtype);
END emp_pkg;
/
SHOW ERRORS

Package created.

No errors.

b. In the body of the package, define a private variable called emp_table based on the
type defined in the specification to hold employee records. Implement the
get_employees procedure to bulk fetch the data into the table.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;
 emp_table emp_tabtype;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-57

Practice 7: Solutions (continued)
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-58

Practice 7: Solutions (continued)
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE get_employees(dept_id employees.department_id%type) IS
 BEGIN
 SELECT * BULK COLLECT INTO emp_table
 FROM EMPLOYEES
 WHERE department_id = dept_id;
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-59

Practice 7: Solutions (continued)
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Package body created.

No errors.

c. Create a new procedure in the specification and body, called show_employees, which
does not take arguments and displays the contents of the private PL/SQL table variable (if
any data exists).
Hint: Use the print_employee procedure.

CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE emp_tabtype IS TABLE OF employees%ROWTYPE;
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE get_employees(dept_id employees.department_id%type);
 PROCEDURE init_departments;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-60

Practice 7: Solutions (continued)
 PROCEDURE print_employee(emprec employees%rowtype);
 PROCEDURE show_employees;
END emp_pkg;
/
SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;
 emp_table emp_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-61

Practice 7: Solutions (continued)
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE get_employees(dept_id employees.department_id%type) IS
 BEGIN
 SELECT * BULK COLLECT INTO emp_table
 FROM EMPLOYEES
 WHERE department_id = dept_id;
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-62

Practice 7: Solutions (continued)
 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;

 PROCEDURE show_employees IS
 BEGIN
 IF emp_table IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('Employees in Package table');
 FOR i IN 1 .. emp_table.COUNT
 LOOP
 print_employee(emp_table(i));
 END LOOP;
 END IF;
 END show_employees;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Package created.

No errors.

Package body created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-63

Practice 7: Solutions (continued)

d. Invoke the emp_pkg.get_employees procedure for department 30, and then invoke
emp_pkg.show_employees. Repeat this for department 60.

EXECUTE emp_pkg.get_employees(30)
EXECUTE emp_pkg.show_employees

PL/SQL procedure successfully completed.

Employees in Package table
30 114 Den Raphaely PU_MAN 11000
30 115 Alexander Khoo PU_CLERK 3100
30 116 Shelli Baida PU_CLERK 2900
30 117 Sigal Tobias PU_CLERK 2800
30 118 Guy Himuro PU_CLERK 2600
30 119 Karen Colmenares PU_CLERK 2500
30 209 Samuel Joplin SA_REP 1000
PL/SQL procedure successfully completed.

EXECUTE emp_pkg.get_employees(60)
EXECUTE emp_pkg.show_employees

PL/SQL procedure successfully completed.

Employees in Package table
60 103 Alexander Hunold IT_PROG 9000
60 104 Bruce Ernst IT_PROG 6000
60 105 David Austin IT_PROG 4800
60 106 Valli Pataballa IT_PROG 4800
60 107 Diana Lorentz IT_PROG 4200
PL/SQL procedure successfully completed.

2. Your manager wants to keep a log whenever the add_employee procedure in the package
is invoked to insert a new employee into the EMPLOYEES table.

a. First, load and execute the E:\labs\PLPU\labs\lab_07_02_a.sql script to
create a log table called LOG_NEWEMP, and a sequence called log_newemp_seq.

CREATE TABLE log_newemp (
 entry_id NUMBER(6) CONSTRAINT log_newemp_pk PRIMARY KEY,
 user_id VARCHAR2(30),
 log_time DATE,
 name VARCHAR2(60)
);

CREATE SEQUENCE log_newemp_seq;

Table created.

Sequence created.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-64

Practice 7: Solutions (continued)

b. In the package body, modify the add_employee procedure, which performs the actual
INSERT operation to have a local procedure called audit_newemp. The
audit_newemp procedure must use an autonomous transaction to insert a log record
into the LOG_NEWEMP table. Store the USER, the current time, and the new employee
name in the log table row. Use log_newemp_seq to set the entry_id column.
Note: Remember to perform a COMMIT operation in a procedure with an autonomous
transaction.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;
 emp_table emp_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS

 PROCEDURE audit_newemp IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 user_id VARCHAR2(30) := USER;
 BEGIN
 INSERT INTO log_newemp (entry_id, user_id, log_time, name)
 VALUES (log_newemp_seq.NEXTVAL, user_id, sysdate,
 first_name||' '||last_name);
 COMMIT;
 END audit_newemp;

 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-65

Practice 7: Solutions (continued)
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

 ...

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Package body created.

No errors.

c. Modify the add_employee procedure to invoke audit_emp before it performs the
insert operation.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;
 emp_table emp_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-66

Practice 7: Solutions (continued)
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS

 PROCEDURE audit_newemp IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 user_id VARCHAR2(30) := USER;
 BEGIN
 INSERT INTO log_newemp (entry_id, user_id, log_time, name)
 VALUES (log_newemp_seq.NEXTVAL, user_id, sysdate,
 first_name||' '||last_name);
 COMMIT;
 END audit_newemp;
 BEGIN
 IF valid_deptid(deptid) THEN
 audit_newemp;
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;
 ...
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Package body created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-67

Practice 7: Solutions (continued)

d. Invoke the add_employee procedure for these new employees: Max Smart in
department 20 and Clark Kent in department 10. What happens?

EXECUTE emp_pkg.add_employee('Max', 'Smart', 20)
EXECUTE emp_pkg.add_employee('Clark', 'Kent', 10)

PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

Both insert operations complete successfully, and the log table has two log records,
as shown in the next step.

e. Query the two EMPLOYEES records added, and the records in the LOG_NEWEMP table.
How many log records are present?

SELECT department_id, first_name, last_name
FROM employees
WHERE last_name IN ('Smart','Kent');

SELECT *
FROM log_newemp;

 There are two log records, one for Smart and the other for Kent.

f. Execute a ROLLBACK statement to undo the insert operations that have not been
committed. Use the same queries from Exercise 2e: the first to check whether the
employee rows for Smart and Kent have been removed, and the second to check the
log records in the LOG_NEWEMP table. How many log records are present? Why?

ROLLBACK;

Rollback complete.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-68

Practice 7: Solutions (continued)
SELECT department_id, first_name, last_name
FROM employees
WHERE last_name IN ('Smart','Kent');

no rows selected

SELECT *
FROM log_newemp;

The two employee records are removed (rolled back). The two log records remain in
the log table because they were inserted using an autonomous transaction, which is
unaffected by the rollback performed in the main transaction.

If you have time, complete the following exercise:

3. Modify the EMP_PKG package to use AUTHID of CURRENT_USER and test the behavior
with any other student.
Note: Verify that the LOG_NEWEMP table exists from Exercise 2 in this practice.

a. First, grant the EXECUTE privilege on your EMP_PKG package to another student.

Assume you are ORA1 and the other student is ORA2. You enter:
GRANT EXECUTE ON EMP_PKG TO ORA2;

Grant succeeded.

b. Ask the other student to invoke your add_employee procedure to insert the employee
Jaco Pastorius in department 10. Remember to prefix the package name with the
owner of the package. The call should operate with definer’s rights.

User ORA2 enters:
EXECUTE ora1.emp_pkg.add_employee('Jaco', 'Pastorius', 10)

PL/SQL procedure successfully completed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-69

Practice 7: Solutions (continued)

c. Now, execute a query of the employees in department 10. In which user’s employee table
did the new record get inserted?

User ORA1 executes:
SELECT department_id, first_name, last_name
FROM employees
WHERE department_id = 10;

User ORA2 executes:
SELECT department_id, first_name, last_name
FROM departments
WHERE department_id = 10;

 The new employee is added to the table in the ORA1 schema—that is, in the table of
the owner of the EMP_PKG package.

d. Now, modify your package EMP_PKG specification to use an AUTHID
CURRENT_USER. Compile the body of EMP_PKG.

User ORA1 executes:
CREATE OR REPLACE PACKAGE emp_pkg AUTHID CURRENT_USER IS
 TYPE emp_tabtype IS TABLE OF employees%ROWTYPE;
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-70

Practice 7: Solutions (continued)
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE get_employees(dept_id employees.department_id%type);
 PROCEDURE init_departments;
 PROCEDURE print_employee(emprec employees%rowtype);
 PROCEDURE show_employees;
END emp_pkg;
/
SHOW ERRORS

ALTER PACKAGE emp_pkg COMPILE BODY;

Package created.

No errors.

Package body altered.

e. Ask the same student to execute the add_employee procedure again to add employee
Joe Zawinal in department 10.

Note: Make sure that the user ORA2 has executed the Practice 7-2a and created the
log_newemp table before executing emp_pkg.add_employee.

User ORA2 executes:

EXECUTE ora1.emp_pkg.add_employee('Joe', 'Zawinal', 10)

PL/SQL procedure successfully completed.

f. Query your employees in department 10. In which table was the new employee added?

User ORA1 executes:
SELECT department_id, first_name, last_name
FROM employees
WHERE department_id = 10;

User ORA2 executes:
SELECT department_id, first_name, last_name
FROM employees
WHERE department_id = 10;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-71

Practice 7: Solutions (continued)

The new employee is added to the user ORA2 employee table. That is, the new
employee is added to the table that is owned by the caller (invoker’s rights) of the
package procedure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-72

Practice 7: Solutions (continued)

g. Write a query to display the records added in the LOG_NEWEMP tables. Ask the other
student to query his or her own copy of the table.

User ORA1 executes:
SELECT *
FROM log_newemp;

User ORA2 executes:
SELECT *
FROM log_newemp;

The log records created by the audit_emp procedure (which executes the
autonomous transaction) are stored in the log table of the owner of the package
when the package procedure is executed with the definer’s (owner) rights. The log
records are stored in the caller’s log table when the package procedure is executed
with invoker’s (caller) rights.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-73

Practice 8: Solutions

1. Answer the following questions.

a. Can a table or a synonym be invalidated?

A table or a synonym can never be invalidated; however, dependent objects can be
invalidated.

b. Consider the following dependency example:

The stand-alone procedure MY_PROC depends on the MY_PROC_PACK
package procedure. The MY_PROC_PACK procedure’s definition is
changed by recompiling the package body. The MY_PROC_PACK
procedure’s declaration is not altered in the package
specification.

 In this scenario, is the stand-alone procedure MY_PROC invalidated?

No, it is not invalidated because the stand-alone procedure MY_PROC depends on
the MY_PROC_PACK package procedure, which has not been altered. Although the
package body is recompiled, the package specification is not invalidated and does
not need to be recompliled.

2. Create a tree structure showing all dependencies involving your add_employee procedure
and your valid_deptid function.
Note: add_employee and valid_deptid were created in the lesson titled “Creating
Stored Functions.” You can run the solution scripts for Practice 2 if you need to create the
procedure and function.

a. Load and execute the utldtree.sql script, which is located in the
E:\lab\PLPU\Labs folder.

 When you execute the script, the following results are displayed (you can ignore the error
messages):

drop sequence deptree_seq
 *

ERROR at line 1:
ORA-02289: sequence does not exist
Sequence created.

drop table deptree_temptab
 *

ERROR at line 1:
ORA-00942: table or view does not exist
Table created.

Procedure created.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-74

Practice 8: Solutions (continued)

drop view deptree
*

ERROR at line 1:
ORA-00942: table or view does not exist

REM This view will succeed if current user is sys. This view shows
REM which shared cursors depend on the given object. If the current
REM user is not sys, then this view get an error either about lack
REM of privileges or about the non-existence of table x$kglxs.

set echo off

 from deptree_temptab d, dba_objects o
 *

ERROR at line 5:
ORA-00942: table or view does not exist

REM This view will succeed if current user is not sys. This view
REM does *not* show which shared cursors depend on the given object.
REM If the current user is sys then this view will get an error
REM indicating that the view already exists (since prior view create
REM will have succeeded).

set echo off
View created.

drop view ideptree
*

ERROR at line 1:
ORA-00942: table or view does not exist
View created.

b. Execute the deptree_fill procedure for the add_employee procedure.

EXECUTE deptree_fill('PROCEDURE', USER, 'add_employee')

PL/SQL procedure successfully completed.

c. Query the IDEPTREE view to see your results.

SELECT * FROM IDEPTREE;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-75

Practice 8: Solutions (continued)

d. Execute the deptree_fill procedure for the valid_deptid function.

EXECUTE deptree_fill('FUNCTION', USER, 'valid_deptid')

PL/SQL procedure successfully completed.

e. Query the IDEPTREE view to see your results.

SELECT * FROM IDEPTREE;

If you have time, complete the following exercise:

3. Dynamically validate invalid objects.

a. Make a copy of your EMPLOYEES table, called EMPS.

CREATE TABLE emps AS
 SELECT * FROM employees;

Table created.

b. Alter your EMPLOYEES table and add the TOTSAL column with the
NUMBER(9,2)data type.

ALTER TABLE employees
 ADD (totsal NUMBER(9,2));

Table altered.

c. Create and save a query (lab8_soln_3c.sql) to display the name, type, and status of
all invalid objects.

SELECT object_name, object_type, status
FROM USER_OBJECTS
WHERE status = 'INVALID';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-76

Practice 8: Solutions (continued)

d. In compile_pkg (created in Practice 6 in the lesson titled “Dynamic SQL and
Metadata”), add a procedure called recompile that recompiles all invalid procedures,
functions, and packages in your schema. Use Native Dynamic SQL to ALTER the invalid
object type and COMPILE it.

CREATE OR REPLACE PACKAGE compile_pkg IS
 PROCEDURE make(name VARCHAR2);
 PROCEDURE recompile;
END compile_pkg;
/
SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY compile_pkg IS

 PROCEDURE execute(stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(stmt);
 EXECUTE IMMEDIATE stmt;
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-77

Practice 8: Solutions (continued)
 FUNCTION get_type(name VARCHAR2) RETURN VARCHAR2 IS
 proc_type VARCHAR2(30) := NULL;
 BEGIN
 /*
 * The ROWNUM = 1 is added to the condition
 * to ensure only one row is returned if the
 * name represents a PACKAGE, which may also
 * have a PACKAGE BODY. In this case, we can
 * only compile the complete package, but not
 * the specification or body as separate
 * components.
 */
 SELECT object_type INTO proc_type
 FROM user_objects
 WHERE object_name = UPPER(name)
 AND ROWNUM = 1;
 RETURN proc_type;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN NULL;
 END;

 PROCEDURE make(name VARCHAR2) IS
 stmt VARCHAR2(100);
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 stmt := 'ALTER '|| proc_type ||' '|| name ||' COMPILE';
 execute(stmt);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Subprogram '''|| name ||''' does not exist');
 END IF;
 END make;

 PROCEDURE recompile IS
 stmt VARCHAR2(200);
 obj_name user_objects.object_name%type;
 obj_type user_objects.object_type%type;
 BEGIN
 FOR objrec IN (SELECT object_name, object_type
 FROM user_objects
 WHERE status = 'INVALID'
 AND object_type <> 'PACKAGE BODY')
 LOOP
 stmt := 'ALTER '|| objrec.object_type ||' '||
 objrec.object_name ||' COMPILE';
 execute(stmt);
 END LOOP;
 END recompile;
END compile_pkg;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-78

Practice 8: Solutions (continued)
SHOW ERRORS

Package created.

No errors.

Package body created.

No errors.

e. Execute the compile_pkg.recompile procedure.

EXECUTE compile_pkg.recompile

PL/SQL procedure successfully completed.

f. Run the script file that you created in step 3c (lab8_soln_3c.sql) to check the
status column value. Do you still have objects with an INVALID status?

SELECT object_name, object_type, status
FROM USER_OBJECTS
WHERE status = 'INVALID';

no rows selected

 No rows are returned. There are no objects with an INVALID status.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-79

Practice 9: Solutions

1. Create a table called PERSONNEL by executing the E:\labs\PLPU\labs\
lab_09_01.sql script. The table contains the following attributes and data types:

Column Name Data Type Length
ID NUMBER 6

last_name VARCHAR2 35
review CLOB N/A

picture BLOB N/A

CREATE TABLE personnel (
 id NUMBER(6) constraint personnel_id_pk PRIMARY KEY,
 last_name VARCHAR2(35),
 review CLOB,
 picture BLOB);

Table created.

2. Insert two rows into the PERSONNEL table, one each for employee 2034 (whose last name
is Allen) and for employee 2035 (whose last name is Bond). Use the empty function for
the CLOB, and provide NULL as the value for the BLOB.

INSERT INTO personnel
VALUES (2034, 'Allen', empty_clob(), NULL);

INSERT INTO personnel
VALUES (2035, 'Bond', empty_clob(), NULL);

1 row created.

1 row created.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-80

Practice 9: Solutions (continued)

3. Examine and execute the E:\labs\PLPU\labs\lab_09_03.sql script. The script
creates a table named REVIEW_TABLE. This table contains annual review information for
each employee. The script also contains two statements to insert review details for two
employees.

CREATE TABLE review_table (
 employee_id number,
 ann_review VARCHAR2(2000));

INSERT INTO review_table
VALUES (2034,
 'Very good performance this year. '||
 'Recommended to increase salary by $500');
INSERT INTO review_table
VALUES (2035,
 'Excellent performance this year. '||
 'Recommended to increase salary by $1000');

COMMIT;

Table created.

1 row created.

1 row created.

Commit complete.

4. Update the PERSONNEL table.

a. Populate the CLOB for the first row by using the following subquery in an UPDATE
statement:

SELECT ann_review
FROM review_table
WHERE employee_id = 2034;

UPDATE personnel
 SET review = (SELECT ann_review
 FROM review_table
 WHERE employee_id = 2034)
 WHERE last_name = 'Allen';

1 row updated.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-81

Practice 9: Solutions (continued)

b. Populate the CLOB for the second row, using PL/SQL and the DBMS_LOB package.
Use the following SELECT statement to provide a value for the LOB locator.

SELECT ann_review
FROM review_table
WHERE employee_id = 2035;

DECLARE
 lobloc CLOB;
 text VARCHAR2(2000);
 amount NUMBER ;
 offset INTEGER;
BEGIN
 SELECT ann_review INTO text
 FROM review_table
 WHERE employee_id = 2035;
 SELECT review INTO lobloc
 FROM personnel
 WHERE last_name = 'Bond' FOR UPDATE;
 offset := 1;
 amount := length(text);
 DBMS_LOB.WRITE (lobloc, amount, offset, text);
 COMMIT;
END;
/

PL/SQL procedure successfully completed.

If you have time, complete the following exercise:

5. Create a procedure that adds a locator to a binary file into the PICTURE column of the
COUNTRIES table. The binary file is a picture of the country flag. The image files are named
after the country IDs. You need to load an image file locator into all rows in the Europe
region (REGION_ID = 1) in the COUNTRIES table. A DIRECTORY object called
COUNTRY_PIC referencing the location of the binary files has to be created for you.

a. Add the image column to the COUNTRIES table using:
ALTER TABLE countries ADD (picture BFILE);

ALTER TABLE countries ADD (picture BFILE);

Table altered.

 Alternatively, use the E:\labs\PLPU\labs\ Lab_09_05_a.sql file.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-82

Practice 9: Solutions (continued)

b. Create a PL/SQL procedure called load_country_image that uses the
DBMS_LOB.FILEEXISTS to test whether the country picture file exists. If the file
exists, then set the BFILE locator for the file in the PICTURE column; otherwise,
display a message that the file does not exist. Use the DBMS_OUTPUT package to report
file size information for each image associated with the PICTURE column.

CREATE OR REPLACE PROCEDURE load_country_image (dir IN VARCHAR2) IS
 file BFILE;
 filename VARCHAR2(40);
 rec_number NUMBER;
 file_exists BOOLEAN;
 CURSOR country_csr IS
 SELECT country_id
 FROM countries
 WHERE region_id = 1
 FOR UPDATE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('LOADING LOCATORS TO IMAGES...');
 FOR rec IN country_csr
 LOOP
 filename := rec.country_id || '.gif';
 file := BFILENAME(dir, filename);
 file_exists := (DBMS_LOB.FILEEXISTS(file) = 1);
 IF file_exists THEN
 DBMS_LOB.FILEOPEN(file);
 UPDATE countries
 SET picture = file
 WHERE CURRENT OF country_csr;
 DBMS_OUTPUT.PUT_LINE('Set Locator to file: '|| filename ||
 ' Size: ' || DBMS_LOB.GETLENGTH(file));
 DBMS_LOB.FILECLOSE(file);
 rec_number := country_csr%ROWCOUNT;
 ELSE
 DBMS_OUTPUT.PUT_LINE('File ' || filename ||' does not exist');
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('TOTAL FILES UPDATED: ' || rec_number);
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_LOB.FILECLOSE(file);
 DBMS_OUTPUT.PUT_LINE('Error: '|| to_char(SQLCODE) || SQLERRM);
END load_country_image;
/
SHOW ERRORS

Procedure created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-83

Practice 9: Solutions (continued)

c. Invoke the procedure by passing the name of the directory object COUNTRY_PIC as a
string literal parameter value.

SET SERVEROUTPUT ON
EXECUTE load_country_image('COUNTRY_PIC')

LOADING LOCATORS TO IMAGES...
Set Locator to file: BE.gif Size: 1397
Set Locator to file: CH.gif Size: 1202
Set Locator to file: DE.gif Size: 1271
Set Locator to file: DK.gif Size: 1327
Set Locator to file: FR.gif Size: 1337
Set Locator to file: IT.gif Size: 1322
Set Locator to file: NL.gif Size: 1205
Set Locator to file: UK.gif Size: 2489
TOTAL FILES UPDATED: 8
PL/SQL procedure successfully completed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-84

Practice 10: Solutions

1. The rows in the JOBS table store a minimum salary and a maximum salary allowed for
different JOB_ID values. You are asked to write code to ensure that employees’ salaries fall
within the range allowed for their job type, for insert and update operations.

a. Write a procedure called CHECK_SALARY that accepts two parameters, one for an
employee’s job ID string and the other for the salary. The procedure uses the job ID to
determine the minimum and maximum salary for the specified job. If the salary
parameter does not fall within the salary range of the job, inclusive of the minimum and
maximum, then it should raise an application exception, with the message Invalid
salary <sal>. Salaries for job <jobid> must be between
<min> and <max>. Replace the various items in the message with values supplied by
parameters and variables populated by queries. Save the file.

CREATE OR REPLACE PROCEDURE check_salary (the_job VARCHAR2, the_salary
NUMBER) IS
 minsal jobs.min_salary%type;
 maxsal jobs.max_salary%type;
BEGIN
 SELECT min_salary, max_salary INTO minsal, maxsal
 FROM jobs
 WHERE job_id = UPPER(the_job);
 IF the_salary NOT BETWEEN minsal AND maxsal THEN
 RAISE_APPLICATION_ERROR(-20100,
 'Invalid salary $'||the_salary||'. '||
 'Salaries for job '|| the_job ||
 ' must be between $'|| minsal ||' and $' || maxsal);
 END IF;
END;
/
SHOW ERRORS

Procedure created.

No errors.

b. Create a trigger called CHECK_SALARY_TRG on the EMPLOYEES table that fires before
an INSERT or UPDATE operation on each row. The trigger must call the
CHECK_SALARY procedure to carry out the business logic. The trigger should pass the
new job ID and salary to the procedure parameters.

CREATE OR REPLACE TRIGGER check_salary_trg
BEFORE INSERT OR UPDATE OF job_id, salary
ON employees
FOR EACH ROW
BEGIN
 check_salary(:new.job_id, :new.salary);
END;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-85

Practice 10: Solutions (continued)
Trigger created.

No errors.

2. Test the CHECK_SAL_TRG using the following cases:

a. Using your EMP_PKG.ADD_EMPLOYEE procedure, add employee Eleanor Beh in
department 30. What happens and why?

EXECUTE emp_pkg.add_employee('Eleanor', 'Beh', 30)

BEGIN emp_pkg.add_employee('Eleanor', 'Beh', 30); END;

*

ERROR at line 1:
ORA-20100: Invalid salary $1000. Salaries for job SA_REP must be between
$6000 and $12000
ORA-06512: at "ORA1.CHECK_SALARY", line 9
ORA-06512: at "ORA1.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA1.CHECK_SALARY_TRG'
ORA-06512: at "ORA1.EMP_PKG", line 33
ORA-06512: at "ORA1.EMP_PKG", line 50
ORA-06512: at line 1

The trigger raises an exception because the EMP_PKG.ADD_EMPLOYEE procedure
invokes an overloaded version of itself that uses the default salary of $1,000 and the
default job ID of SA_REP. However, the JOBS table stores a minimum salary of
$6,000 for the SA_REP job type.

b. Update the salary of employee 115 to $2,000. In a separate update operation,
change the employee job ID to HR_REP. What happens in each case?

UPDATE employees
 SET salary = 2000
WHERE employee_id = 115;

UPDATE employees
 *

ERROR at line 1:
ORA-20100: Invalid salary $2000. Salaries for job PU_CLERK must be
between $2500 and $5500
ORA-06512: at "ORA1.CHECK_SALARY", line 9
ORA-06512: at "ORA1.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA1.CHECK_SALARY_TRG'

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-86

Practice 10: Solutions (continued)
UPDATE employees
 SET job_id = 'HR_REP'
WHERE employee_id = 115;

UPDATE employees
 *

ERROR at line 1:
ORA-20100: Invalid salary $3100. Salaries for job HR_REP must be between
$4000 and $9000
ORA-06512: at "ORA1.CHECK_SALARY", line 9
ORA-06512: at "ORA1.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA1.CHECK_SALARY_TRG'

The first update statement fails to set the salary to $2,000. The check salary trigger
rule fails the update operation because the new salary for employee 115 is less than
the minimum allowed for the PU_CLERK job.

The second update fails to change the employee’s job because the current
employee’s salary of $3,100 is less than the minimum for the new HR_REP job.

c. Update the salary of employee 115 to $2,800. What happens?

UPDATE employees
 SET salary = 2800
WHERE employee_id = 115;

1 row updated.

The update operation is successful because the new salary falls within the acceptable
range for the current job ID.

3. Update the CHECK_SALARY_TRG trigger to fire only when the job ID or salary values have
actually changed.

a. Implement the business rule using a WHEN clause to check whether the JOB_ID or
SALARY values have changed.
Note: Make sure that the condition handles the NULL in the OLD.column_name
values if an INSERT operation is performed; otherwise, an insert operation will fail.

CREATE OR REPLACE TRIGGER check_salary_trg
BEFORE INSERT OR UPDATE OF job_id, salary
ON employees FOR EACH ROW
WHEN (new.job_id <> NVL(old.job_id,'?') OR
 new.salary <> NVL(old.salary,0))
BEGIN
 check_salary(:new.job_id, :new.salary);
END;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-87

Practice 10: Solutions (continued)
SHOW ERRORS

Trigger created.

No errors.

b. Test the trigger by executing EMP_PKG.ADD_EMPLOYEE procedure with the following
parameter values: first_name='Eleanor', last name='Beh',
email='EBEH', job='IT_PROG', sal=5000.

BEGIN
 emp_pkg.add_employee('Eleanor', 'Beh', 'EBEH',
 job => 'IT_PROG', sal => 5000);
END;
/

PL/SQL procedure successfully completed.

c. Update employees with the IT_PROG job by incrementing their salary by $2,000. What
happens?

UPDATE employees
 SET salary = salary + 2000
WHERE job_id = 'IT_PROG';

UPDATE employees
 *

ERROR at line 1:
ORA-20100: Invalid salary $11000. Salaries for job IT_PROG must be
between $4000 and $10000
ORA-06512: at "ORA1.CHECK_SALARY", line 9
ORA-06512: at "ORA1.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA1.CHECK_SALARY_TRG'

 An employee’s salary in the specified job type exceeds the maximum salary for that
job type. No employee salaries in the IT_PROG job type are updated.

O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-88

Practice 10: Solutions (continued)

d. Update the salary to $9,000 for Eleanor Beh.
Hint: Use an UPDATE statement with a subquery in the WHERE clause. What happens?

UPDATE employees
 SET salary = 9000
WHERE employee_id = (SELECT employee_id
 FROM employees
 WHERE last_name = 'Beh');

1 row updated

 The update operation is successful because the salary is valid for the employee’s job
type.

e. Change the job of Eleanor Beh to ST_MAN using another UPDATE statement with a
subquery. What happens?

UPDATE employees
 set job_id = 'ST_MAN'
WHERE employee_id = (SELECT employee_id
 FROM employees
 WHERE last_name = 'Beh');

UPDATE employees
 *

ERROR at line 1:
ORA-20100: Invalid salary $9000. Salaries for job ST_MAN must be between
$5500 and $8500
ORA-06512: at "ORA1.CHECK_SALARY", line 9
ORA-06512: at "ORA1.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA1.CHECK_SALARY_TRG'

The maximum salary of the new job type is less than the employee’s current salary.
Therefore, the operation update fails.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-89

Practice 10: Solutions (continued)

4. You are asked to prevent employees from being deleted during business hours.

a. Write a statement trigger called DELETE_EMP_TRG on the EMPLOYEES table to
prevent rows from being deleted during weekday business hours, which are from
9:00 a.m. to 6:00 p.m.

CREATE OR REPLACE TRIGGER delete_emp_trg
BEFORE DELETE ON employees
DECLARE
 the_day VARCHAR2(3) := TO_CHAR(SYSDATE, 'DY');
 the_hour PLS_INTEGER := TO_NUMBER(TO_CHAR(SYSDATE, 'HH24'));
BEGIN
 IF (the_hour BETWEEN 9 AND 18) AND (the_day NOT IN ('SAT','SUN')) THEN
 RAISE_APPLICATION_ERROR(-20150,
 'Employee records cannot be deleted during the week 9am and 6pm');
 END IF;
END;
/
SHOW ERRORS

Trigger created.

No errors.

b. Attempt to delete employees with JOB_ID of SA_REP who are not assigned to a
department.
Note: This is employee Grant with ID 178.

DELETE FROM employees
 WHERE job_id = 'SA_REP'
 AND department_id IS NULL;

DELETE FROM employees
 *

ERROR at line 1:
ORA-20150: Employee records cannot be deleted during the week 9am and 6pm
ORA-06512: at "ORA1.DELETE_EMP_TRG", line 6
ORA-04088: error during execution of trigger 'ORA1.DELETE_EMP_TRG'

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-90

Practice 11: Solutions

1. Employees receive an automatic increase in salary if the minimum salary for a job is
increased to a value larger than their current salary. Implement this requirement through a
package procedure called by a trigger on the JOBS table. When you attempt to update the
minimum salary in the JOBS table and try to update the employee’s salary, the
CHECK_SALARY trigger attempts to read the JOBS table, which is subject to change, and
you get a mutating table exception that is resolved by creating a new package and additional
triggers.

a. Update your EMP_PKG package (from Practice 7) by adding a procedure called
SET_SALARY that updates the employees’ salaries. The procedure accepts two
parameters: the job ID for those salaries that may have to be updated, and the new
minimum salary for the job ID. The procedure sets all the employee salaries to the
minimum for their job if their current salary is less than the new minimum value.

CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE emp_tabtype IS TABLE OF employees%ROWTYPE;
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE get_employees(dept_id employees.department_id%type);
 PROCEDURE init_departments;
 PROCEDURE print_employee(emprec employees%rowtype);
 PROCEDURE set_salary(jobid VARCHAR2, min_salary NUMBER);
END emp_pkg;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-91

Practice 11: Solutions (continued)
CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;
 emp_table emp_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS

 PROCEDURE audit_newemp IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 user_id VARCHAR2(30) := USER;
 BEGIN
 INSERT INTO log_newemp (entry_id, user_id, log_time, name)
 VALUES (log_newemp_seq.NEXTVAL, user_id, sysdate,
 first_name||' '||last_name);
 COMMIT;
 END audit_newemp;

 BEGIN
 IF valid_deptid(deptid) THEN
 audit_newemp;
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-92

Practice 11: Solutions (continued)
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE get_employees(dept_id employees.department_id%type) IS
 BEGIN
 SELECT * BULK COLLECT INTO emp_table
 FROM EMPLOYEES
 WHERE department_id = dept_id;
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-93

Practice 11: Solutions (continued)
 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;

 PROCEDURE show_employees IS
 BEGIN
 IF emp_table IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('Employees in Package table');
 FOR i IN 1 .. emp_table.COUNT
 LOOP
 print_employee(emp_table(i));
 END LOOP;
 END IF;
 END show_employees;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

 PROCEDURE set_salary(jobid VARCHAR2, min_salary NUMBER) IS
 CURSOR empcsr IS
 SELECT employee_id
 FROM employees
 WHERE job_id = jobid AND salary < min_salary;
 BEGIN
 FOR emprec IN empcsr
 LOOP
 UPDATE employees
 SET salary = min_salary
 WHERE employee_id = emprec.employee_id;
 END LOOP;
 END set_salary;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-94

Practice 11: Solutions (continued)
Package created.

No errors.

Package body created.

No errors.

b. Create a row trigger named UPD_MINSALARY_TRG on the JOBS table that invokes the
EMP_PKG.SET_SALARY procedure, when the minimum salary in the JOBS table is
updated for a specified job ID.

CREATE OR REPLACE TRIGGER upd_minsalary_trg
AFTER UPDATE OF min_salary ON JOBS
FOR EACH ROW
BEGIN
 emp_pkg.set_salary(:new.job_id, :new.min_salary);
END;
/
SHOW ERRORS

Trigger created.

No errors.

c. Write a query to display the employee ID, last name, job ID, current salary, and
minimum salary for employees who are programmers—that is, their JOB_ID is
'IT_PROG'. Then update the minimum salary in the JOBS table to increase it by
$1,000. What happens?

SELECT employee_id, last_name, salary
FROM employees
WHERE job_id = 'IT_PROG';

UPDATE jobs
 SET min_salary = min_salary + 1000
WHERE job_id = 'IT_PROG';

6 rows selected.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-95

Practice 11: Solutions (continued)
UPDATE jobs
 *

ERROR at line 1:
ORA-04091: table ORA1.JOBS is mutating, trigger/function may not see it
ORA-06512: at "ORA1.CHECK_SALARY", line 5
ORA-06512: at "ORA1.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA1.CHECK_SALARY_TRG'
ORA-06512: at "ORA1.EMP_PKG", line 140
ORA-06512: at "ORA1.UPD_MINSALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA1.UPD_MINSALARY_TRG'

 The update of the MIN_SALARY column for job 'IT_PROG'fails because the
UPD_MINSALARY_TRG trigger on the JOBS table attempts to update the employees’
salaries by calling the EMP_PKG.SET_SALARY procedure. The SET_SALARY
procedure causes the CHECK_SALARY_TRG trigger to fire (a cascading effect).
CHECK_SALARY_TRG calls the CHECK_SALARY procedure, which attempts to read the
JOBS table data, thus encountering the mutating table exception on the JOBS table,
which is the table that is subject to the original UPDATE operation.

2. To resolve the mutating table issue, you create JOBS_PKG to maintain in memory a copy of
the rows in the JOBS table. Then the CHECK_SALARY procedure is modified to use the
package data rather than issue a query on a table that is mutating to avoid the exception.
However, a BEFORE INSERT OR UPDATE statement trigger must be created on the
EMPLOYEES table to initialize the JOBS_PKG package state before the CHECK_SALARY
row trigger is fired.

a. Create a new package called JOBS_PKG with the following specification.

PROCEDURE initialize;
FUNCTION get_minsalary(jobid VARCHAR2) RETURN NUMBER;
FUNCTION get_maxsalary(jobid VARCHAR2) RETURN NUMBER;
PROCEDURE set_minsalary(jobid VARCHAR2,min_salary NUMBER);
PROCEDURE set_maxsalary(jobid VARCHAR2,max_salary NUMBER);

CREATE OR REPLACE PACKAGE jobs_pkg IS
 PROCEDURE initialize;
 FUNCTION get_minsalary(jobid VARCHAR2) RETURN NUMBER;
 FUNCTION get_maxsalary(jobid VARCHAR2) RETURN NUMBER;
 PROCEDURE set_minsalary(jobid VARCHAR2, min_salary NUMBER);
 PROCEDURE set_maxsalary(jobid VARCHAR2, max_salary NUMBER);
END jobs_pkg;
/
SHOW ERRORS

Package created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-96

Practice 11: Solutions (continued)

b. Implement the body of the JOBS_PKG where:
You declare a private PL/SQL index-by table called jobs_tabtype that is indexed by
a string type based on JOBS.JOB_ID%TYPE.
You declare a private variable called jobstab based on jobs_tabtype.

The INITIALIZE procedure reads the rows in the JOBS table by using a cursor loop,
and uses the JOB_ID value for the jobstab index that is assigned its corresponding
row.
The GET_MINSALARY function uses a jobid parameter as an index to the jobstab
and returns the min_salary for that element.
The GET_MAXSALARY function uses a jobid parameter as an index to the jobstab
and returns the max_salary for that element.
The SET_MINSALARY procedure uses its jobid as an index to the jobstab to set the
min_salary field of its element to the value in the min_salary parameter.
The SET_MAXSALARY procedure uses its jobid as an index to the jobstab to set the
max_salary field of its element to the value in the max_salary parameter.

CREATE OR REPLACE PACKAGE BODY jobs_pkg IS
 TYPE jobs_tabtype IS TABLE OF jobs%rowtype
 INDEX BY jobs.job_id%type;
 jobstab jobs_tabtype;

 PROCEDURE initialize IS
 BEGIN
 FOR jobrec IN (SELECT * FROM jobs)
 LOOP
 jobstab(jobrec.job_id) := jobrec;
 END LOOP;
 END initialize;

 FUNCTION get_minsalary(jobid VARCHAR2) RETURN NUMBER IS
 BEGIN
 RETURN jobstab(jobid).min_salary;
 END get_minsalary;

 FUNCTION get_maxsalary(jobid VARCHAR2) RETURN NUMBER IS
 BEGIN
 RETURN jobstab(jobid).max_salary;
 END get_maxsalary;

 PROCEDURE set_minsalary(jobid VARCHAR2, min_salary NUMBER) IS
 BEGIN
 jobstab(jobid).max_salary := min_salary;
 END set_minsalary;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-97

Practice 11: Solutions (continued)
 PROCEDURE set_maxsalary(jobid VARCHAR2, max_salary NUMBER) IS
 BEGIN
 jobstab(jobid).max_salary := max_salary;
 END set_maxsalary;

END jobs_pkg;
/
SHOW ERRORS

Package body created.

No errors.

c. Copy the CHECK_SALARY procedure from Practice 10, Exercise 1a, and modify the
code by replacing the query on the JOBS table with statements to set the local minsal
and maxsal variables with values from the JOBS_PKG data by calling the appropriate
GET_*SALARY functions. This step should eliminate the mutating trigger exception.

CREATE OR REPLACE PROCEDURE check_salary (the_job VARCHAR2, the_salary
NUMBER) IS
 minsal jobs.min_salary%type;
 maxsal jobs.max_salary%type;
BEGIN
 /*
 ** Commented out to avoid mutating trigger exception on the JOBS table
 SELECT min_salary, max_salary INTO minsal, maxsal
 FROM jobs
 WHERE job_id = UPPER(the_job);
 */
 minsal := jobs_pkg.get_minsalary(UPPER(the_job));
 maxsal := jobs_pkg.get_maxsalary(UPPER(the_job));
 IF the_salary NOT BETWEEN minsal AND maxsal THEN
 RAISE_APPLICATION_ERROR(-20100,
 'Invalid salary $'||the_salary||'. '||
 'Salaries for job '|| the_job ||
 ' must be between $'|| minsal ||' and $' || maxsal);
 END IF;
END;
/
SHOW ERRORS

Procedure created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-98

Practice 11: Solutions (continued)

d. Implement a BEFORE INSERT OR UPDATE statement trigger called
INIT_JOBPKG_TRG that uses the CALL syntax to invoke the
JOBS_PKG.INITIALIZE procedure to ensure that the package state is current before
the DML operations are performed.

CREATE OR REPLACE TRIGGER init_jobpkg_trg
BEFORE INSERT OR UPDATE ON jobs
CALL jobs_pkg.initialize
/
SHOW ERRORS

Trigger created.

No errors.

e. Test the code changes by executing the query to display the employees who are
programmers, and then issue an update statement to increase the minimum salary of the
IT_PROG job type by 1000 in the JOBS table, followed by a query on the employees
with the IT_PROG job type to check the resulting changes. Which employees’ salaries
have been set to the minimum for their job?

SELECT employee_id, last_name, salary
FROM employees
WHERE job_id = 'IT_PROG';

UPDATE jobs
 SET min_salary = min_salary + 1000
WHERE job_id = 'IT_PROG';

SELECT employee_id, last_name, salary
FROM employees
WHERE job_id = 'IT_PROG';

6 rows selected.

1 row updated.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-99

Practice 11: Solutions (continued)

6 rows selected.

 The employees with last names Austin, Pataballa, and Lorentz have all had
their salaries updated. No exception ocurred during this process, and you
implemented a solution for the mutating table trigger exception.

3. Because the CHECK_SALARY procedure is fired by CHECK_SALARY_TRG before inserting
or updating an employee, you must check whether this still works as expected.

a. Test this by adding a new employee using EMP_PKG.ADD_EMPLOYEE with the
following parameters: (‘Steve’, ‘Morse’, ‘SMORSE’, sal => 6500). What
happens?

EXECUTE emp_pkg.add_employee('Steve', 'Morse', 'SMORSE', sal => 6500)

BEGIN emp_pkg.add_employee('Steve', 'Morse', 'SMORSE', sal => 6500); END;

*

ERROR at line 1:
ORA-01403: no data found
ORA-01403: no data found
ORA-06512: at "ORA1.JOBS_PKG", line 16
ORA-06512: at "ORA1.CHECK_SALARY", line 11
ORA-06512: at "ORA1.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA1.CHECK_SALARY_TRG'
ORA-06512: at "ORA1.EMP_PKG", line 33
ORA-06512: at line 1

The problem here is that the CHECK_SALARY procedure attempts to read the value
of package state variables that have not yet been initialized. This is because it had
been modified to read the miniumum and maximum salaries from JOBS_PK, which
should store the data in a PL/SQL table. When CHECK_SALARY attempts to call
JOBS_PKG.GET_MINSALARY and JOBS_PKG.GET_MAXSALARY, these return
NO_DATA_FOUND exceptions that cause the trigger and the insert operation to fail.
This can be resolved with a BEFORE statement trigger that calls
JOBS_PKG.INITIALIZE to ensure that the JOBS_PKG state is set before you read
it. This is done in the next exercise (3b).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-100

Practice 11: Solutions (continued)

b. To correct the problem encountered when adding or updating an employee, create a
BEFORE INSERT OR UPDATE statement trigger called
EMPLOYEE_INITJOBS_TRG on the EMPLOYEES table that calls the
JOBS_PKG.INITIALIZE procedure. Use the CALL syntax in the trigger body.

CREATE TRIGGER employee_initjobs_trg
BEFORE INSERT OR UPDATE OF job_id, salary ON employees
CALL jobs_pkg.initialize
/

Trigger created.

c. Test the trigger by adding employee Steve Morse again. Confirm the inserted record in
the employees table by displaying the employee ID, first and last names, salary, job
ID, and department ID.

EXECUTE emp_pkg.add_employee('Steve', 'Morse', 'SMORSE', sal => 6500)

PL/SQL procedure successfully completed.

SELECT employee_id, first_name, last_name, salary, job_id, department_id
FROM employees
WHERE last_name = 'Morse';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-101

Practice 12: Solutions

1. Alter the PLSQL_COMPILER_FLAGS parameter to enable native compilation for your
session, and compile any subprogram that you have written.

a. Execute the ALTER SESSION command to enable native compilation.

ALTER SESSION SET PLSQL_COMPILER_FLAGS = 'NATIVE';

Session altered.

b. Compile the EMPLOYEE_REPORT procedure. What occurs during compilation?

ALTER PROCEDURE employee_report COMPILE;

Procedure altered.

A shared library is generated in a directory specified by the database parameter,
plsql_native_library_dir. The library name is prefixed with the object
name and user compiling it, as in the following:
EMPLOYEE_REPORT__ORA1__P__50344.so.

c. Execute the EMPLOYEE_REPORT with the value 'UTL_FILE' as the first parameter,
and 'native_salrepXX.txt' where XX is your student number.

EXECUTE employee_report('UTL_FILE', 'native_salrep01.txt')

PL/SQL procedure successfully completed.

d. Switch compilation to use interpreted compilation

ALTER SESSION SET PLSQL_COMPILER_FLAGS = 'INTERPRETED';

Session altered.

2. In COMPILE_PKG (from Practice 6), add an overloaded version of the procedure called
MAKE, which will compile a named procedure, function, or package.

a. In the specification, declare a MAKE procedure that accepts two string arguments, one for
the name of the PL/SQL construct and the other for the type of PL/SQL program, such as
PROCEDURE, FUNCTION, PACKAGE, or PACKAGE BODY.

CREATE OR REPLACE PACKAGE compile_pkg IS
 dir VARCHAR2(100) := 'UTL_FILE';
 PROCEDURE make(name VARCHAR2);
 PROCEDURE make(name VARCHAR2, objtype VARCHAR2);
 PROCEDURE regenerate(name VARCHAR2);
END compile_pkg;
/
SHOW ERRORS

Package created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-102

Practice 12: Solutions (continued)

b. In the body, write the MAKE procedure to call the DBMS_WARNINGS package to suppress
the PERFORMANCE category. However, save the current compiler warning settings
before you alter them. Then write an EXECUTE IMMEDIATE statement to compile the
PL/SQL object using an appropriate ALTER...COMPILE statement with the supplied
parameter values. Finally, restore the compiler warning settings that were in place for the
calling environment before the procedure is invoked.

CREATE OR REPLACE PACKAGE BODY compile_pkg IS

 PROCEDURE execute(stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(stmt);
 EXECUTE IMMEDIATE stmt;
 END;

 FUNCTION get_type(name VARCHAR2) RETURN VARCHAR2 IS
 proc_type VARCHAR2(30) := NULL;
 BEGIN
 /*
 * The ROWNUM = 1 is added to the condition
 * to ensure only one row is returned if the
 * name represents a PACKAGE, which may also
 * have a PACKAGE BODY. In this case, we can
 * only compile the complete package, but not
 * the specification or body as separate
 * components.
 */
 SELECT object_type INTO proc_type
 FROM user_objects
 WHERE object_name = UPPER(name)
 AND ROWNUM = 1;
 RETURN proc_type;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN NULL;
 END;

 PROCEDURE make(name VARCHAR2) IS
 stmt VARCHAR2(100);
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 stmt := 'ALTER '|| proc_type ||' '|| name ||' COMPILE';
 execute(stmt);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Subprogram '''|| name ||''' does not exist');
 END IF;
 END make;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-103

Practice 12: Solutions (continued)
 PROCEDURE make(name VARCHAR2, objtype VARCHAR2) IS
 stmt VARCHAR2(100);
 warn_value varchar2(200);
 BEGIN
 stmt := 'ALTER '|| objtype ||' '|| name ||' COMPILE';
 warn_value := dbms_warning.get_warning_setting_string;
 dbms_warning.add_warning_setting_cat(
 'PERFORMANCE', 'DISABLE', 'SESSION');
 execute(stmt);
 dbms_warning.set_warning_setting_string(
 warn_value, 'SESSION');
 END make;

 PROCEDURE regenerate (name VARCHAR2) IS
 file UTL_FILE.FILE_TYPE;
 filename VARCHAR2(100) := LOWER(USER ||'_'|| name ||'.sql');
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 file := UTL_FILE.FOPEN(dir, filename, 'w');
 UTL_FILE.PUT(file,
 DBMS_METADATA.GET_DDL(proc_type, UPPER(name)));
 UTL_FILE.FCLOSE(file);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Object with '''|| name ||''' does not exist');
 END IF;

 END regenerate;

END compile_pkg;
/
SHOW ERRORS

Package body created.

No errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-104

Practice 12: Solutions (continued)

3. Write a new PL/SQL package called TEST_PKG containing a procedure called
GET_EMPLOYEES that uses an IN OUT argument.

a. In the specification, declare the GET_EMPLOYEES procedure with two parameters, one
input parameter specifying a department ID, and an IN OUT parameter specifying a
PL/SQL table of employee rows.
Hint: You have to declare a TYPE in the package specification for the PL/SQL table
parameter’s data type.

CREATE OR REPLACE PACKAGE test_pkg IS
 TYPE emp_tabtype IS TABLE OF employees%ROWTYPE;
 PROCEDURE get_employees(dept_id NUMBER, emps IN OUT emp_tabtype);
END test_pkg;
/
SHOW ERRORS

Package created.

No errors.

b. In the package body, implement the GET_EMPLOYEES procedure to retrieve all the
employee rows for a specified department into the PL/SQL table IN OUT parameter.
Hint: Use the SELECT … BULK COLLECT INTO syntax to simplify the code.

CREATE OR REPLACE PACKAGE BODY test_pkg IS
 PROCEDURE get_employees(dept_id NUMBER, emps IN OUT emp_tabtype) IS
 BEGIN
 SELECT * BULK COLLECT INTO emps
 FROM employees
 WHERE department_id = dept_id;
 END get_employees;
END test_pkg;
/
SHOW ERRORS

Package body created.

No errors.

4. Use the ALTER SESSION statement to set the PLSQL_WARNINGS so that all compiler
warning categories are enabled.

ALTER SESSION SET PLSQL_WARNINGS = 'ENABLE:ALL';

Session altered.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units A-105

Practice 12: Solutions (continued)

5. Recompile the TEST_PKG created in an earlier task. What compiler warnings are displayed,
if any?

ALTER PACKAGE test_pkg COMPILE;
SHOW ERRORS

SP2-0809: Package altered with compilation warnings
Errors for PACKAGE TEST_PKG:

6. Write a PL/SQL anonymous block to compile the TEST_PKG package by using the
overloaded COMPILE_PKG.MAKE procedure with two parameters. The anonymous block
should display the current session warning string value before and after it invokes the
COMPILE_PKG.MAKE procedure. Do you see any warning messages? Confirm your
observations by executing the SHOW ERRORS PACKAGE command for the TEST_PKG.

BEGIN
 dbms_output.put_line('Warning level before compilation: '||
 dbms_warning.get_warning_setting_string);
 compile_pkg.make('TEST_PKG', 'PACKAGE');
 dbms_output.put_line('Warning level after compilation: '||
 dbms_warning.get_warning_setting_string);
END;
/
SHOW ERRORS PACKAGE test_pkg;

Warning level before compilation: ENABLE:ALL
ALTER PACKAGE TEST_PKG COMPILE
Warning level after compilation: ENABLE:ALL
PL/SQL procedure successfully completed.

No errors.

 Note: The current warning level setting should be the same before and after the call to
the COMPILE_PKG.MAKE procedure, which alters the settings to suppress warnings
and restores the original setting before returning to the caller.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Table Descriptions and
Data

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-2

Entity Relationship Diagram

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-3

Tables in the Schema
SELECT * FROM tab;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-4

REGIONS Table
DESCRIBE regions

SELECT * FROM regions;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-5

COUNTRIES Table
DESCRIBE countries

SELECT * FROM countries;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-6

LOCATIONS Table
DESCRIBE locations;

SELECT * FROM locations;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-7

DEPARTMENTS Table
DESCRIBE departments

SELECT * FROM departments;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-8

JOBS Table
DESCRIBE jobs

SELECT * FROM jobs;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-9

EMPLOYEES Table
DESCRIBE employees

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-10

EMPLOYEES Table
The headings for the COMMISSION_PCT, MANAGER_ID, and DEPARTMENT_ID
columns are set to COMM, MGRID, and DEPTID in the following screenshot, to fit the table
values across the page.

SELECT * FROM employees;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-11

EMPLOYEES Table (continued)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-12

EMPLOYEES Table (continued)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units B-13

JOB_HISTORY Table
DESCRIBE job_history

SELECT * FROM job_history;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Studies for Implementing Triggers

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Enhance database security with triggers
• Audit data changes using DML triggers
• Enforce data integrity with DML triggers
• Maintain referential integrity using triggers
• Use triggers to replicate data between tables
• Use triggers to automate computation of derived

data
• Provide event-logging capabilities using triggers

Lesson Aim
In this lesson, you learn to develop database triggers in order to enhance features that
cannot otherwise be implemented by the Oracle server. In some cases, it may be sufficient
to refrain from using triggers and accept the functionality provided by the Oracle server.
This lesson covers the following business application scenarios:

• Security
• Auditing
• Data integrity
• Referential integrity
• Table replication
• Computing derived data automatically
• Event logging

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-3

Copyright © 2006, Oracle. All rights reserved.

Controlling Security Within the Server

Using database security with the GRANT statement.
GRANT SELECT, INSERT, UPDATE, DELETE
ON employees
TO clerk; -- database role
GRANT clerk TO scott;

Controlling Security Within the Server
Develop schemas and roles within the Oracle server to control the security of data
operations on tables according to the identity of the user.

• Base privileges upon the username supplied when the user connects to the database.
• Determine access to tables, views, synonyms, and sequences.
• Determine query, data-manipulation, and data-definition privileges. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-4

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT OR UPDATE OR DELETE ON employees

DECLARE
dummy PLS_INTEGER;
BEGIN
IF (TO_CHAR (SYSDATE, 'DY') IN ('SAT','SUN')) THEN
RAISE_APPLICATION_ERROR(-20506,'You may only
change data during normal business hours.');

END IF;
SELECT COUNT(*) INTO dummy FROM holiday
WHERE holiday_date = TRUNC (SYSDATE);
IF dummy > 0 THEN
RAISE_APPLICATION_ERROR(-20507,
'You may not change data on a holiday.');

END IF;
END;
/

Controlling Security
with a Database Trigger

Controlling Security with a Database Trigger
Develop triggers to handle more complex security requirements.

• Base privileges on any database values, such as the time of day, the day of the week,
and so on.

• Determine access to tables only.
• Determine data-manipulation privileges only. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-5

Copyright © 2006, Oracle. All rights reserved.

AUDIT INSERT, UPDATE, DELETE
ON departments
BY ACCESS

WHENEVER SUCCESSFUL;

Using the Server Facility
to Audit Data Operations

The Oracle server stores the audit information in a
data dictionary table or an operating system file.

Audit succeeded.

Auditing Data Operations
You can audit data operations within the Oracle server. Database auditing is used to
monitor and gather data about specific database activities. The DBA can gather statistics
such as which tables are being updated, how many I/Os are performed, how many
concurrent users connect at peak time, and so on.

• Audit users, statements, or objects.
• Audit data retrieval, data-manipulation, and data-definition statements.
• Write the audit trail to a centralized audit table.
• Generate audit records once per session or once per access attempt.
• Capture successful attempts, unsuccessful attempts, or both.
• Enable and disable dynamically.

Executing SQL through PL/SQL program units may generate several audit records
because the program units may refer to other database objects.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-6

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER audit_emp_values
AFTER DELETE OR INSERT OR UPDATE
ON employees FOR EACH ROW
BEGIN
IF (audit_emp_pkg. reason IS NULL) THEN
RAISE_APPLICATION_ERROR (-20059, 'Specify a
reason for operation through the procedure
AUDIT_EMP_PKG.SET_REASON to proceed.');

ELSE
INSERT INTO audit_emp_table (user_name,
timestamp, id, old_last_name, new_last_name,
old_salary, new_salary, comments)

VALUES (USER, SYSDATE, :OLD.employee_id,
:OLD.last_name, :NEW.last_name,:OLD.salary,
:NEW.salary, audit_emp_pkg.reason);

END IF;
END;

CREATE OR REPLACE TRIGGER cleanup_audit_emp
AFTER INSERT OR UPDATE OR DELETE ON employees
BEGIN audit_emp_package.g_reason := NULL;
END;

Auditing by Using a Trigger

Auditing Data Values
Audit actual data values with triggers.
You can do the following:

• Audit data-manipulation statements only.
• Write the audit trail to a user-defined audit table.
• Generate audit records once for the statement or once for each row.
• Capture successful attempts only.
• Enable and disable dynamically.

Using the Oracle server, you can perform database auditing. Database auditing cannot
record changes to specific column values. If the changes to the table columns need to be
tracked and column values need to be stored for each change, then use application
auditing. Application auditing can be done either through stored procedures or database
triggers, as shown in the example in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-7

Copyright © 2006, Oracle. All rights reserved.

AUDIT_EMP_TRG
FOR EACH ROW
increments
package variables

Auditing Triggers by Using
Package Constructs

AUDIT_EMPDML_TRG
AFTER STATEMENT
invokes the AUDIT_EMP
procedure.

DML into the
EMPLOYEES table

AUDIT_TABLE

1

2

3

4
The AUDIT_EMP procedure
reads package variables,
updates AUDIT_TABLE, and
resets package variables.

AUDIT_EMP_PKG
with package
variables

Auditing Triggers by Using Package Constructs
The following pages cover PL/SQL subprograms with examples of the interaction of
triggers, package procedures, functions, and global variables.
The sequence of events:

1. Execute an INSERT, UPDATE, or DELETE command that can manipulate one or
many rows.

2. AUDIT_EMP_TRG (the AFTER ROW trigger) calls the package procedure to
increment the global variables in the VAR_PACK package. Because this is a row
trigger, the trigger fires once for each row that you updated.

3. When the statement has finished, AUDIT_EMP_TAB (the AFTER STATEMENT
trigger) calls the AUDIT_EMP procedure.

4. This procedure assigns the values of the global variables into local variables using
the package functions, updates the AUDIT_TABLE, and then resets the global
variables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-8

Copyright © 2006, Oracle. All rights reserved.

Auditing Triggers by Using
Package Constructs

AFTER statement trigger:

AFTER row trigger:
CREATE OR REPLACE TRIGGER audit_emp_trg
AFTER UPDATE OR INSERT OR DELETE ON EMPLOYEES
FOR EACH ROW
-- Call Audit package to maintain counts
CALL audit_emp_pkg.set(INSERTING,UPDATING,DELETING);
/

CREATE OR REPLACE TRIGGER audit_empdml_trg
AFTER UPDATE OR INSERT OR DELETE on employees
BEGIN
audit_emp; -- write the audit data

END audit_emp_tab;
/

Auditing Triggers by Using Package Constructs (continued)
The AUDIT_EMP_TRIG trigger is a row trigger that fires after every row is manipulated.
This trigger invokes the package procedures depending on the type of data manipulation
language (DML) performed. For example, if the DML updates the salary of an employee,
then the trigger invokes the SET_G_UP_SAL procedure. This package procedure, in turn,
invokes the G_UP_SAL function. This function increments the GV_UP_SAL package
variable that keeps account of the number of rows being changed due to the update of the
salary.
The AUDIT_EMP_TAB trigger fires after the statement has finished. This trigger invokes
the AUDIT_EMP procedure, which is explained on the following pages. The AUDIT_EMP
procedure updates the AUDIT_TABLE table. An entry is made into the AUDIT_TABLE
table with information such as the user who performed the DML, the table on which DML
is performed, and the total number of such data manipulations performed so far on the
table (indicated by the value of the corresponding column in the AUDIT_TABLE table).
At the end, the AUDIT_EMP procedure resets the package variables to 0.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-9

Copyright © 2006, Oracle. All rights reserved.

AUDIT_PKG Package

CREATE OR REPLACE PACKAGE audit_emp_pkg IS
delcnt PLS_INTEGER := 0;
inscnt PLS_INTEGER := 0;
updcnt PLS_INTEGER := 0;
PROCEDURE init;
PROCEDURE set(i BOOLEAN,u BOOLEAN,d BOOLEAN);

END audit_emp_pkg;
/
CREATE OR REPLACE PACKAGE BODY audit_emp_pkg IS
PROCEDURE init IS
BEGIN
inscnt := 0; updcnt := 0; delcnt := 0;

END;
PROCEDURE set(i BOOLEAN,u BOOLEAN,d BOOLEAN) IS
BEGIN
IF i THEN inscnt := inscnt + 1;
ELSIF d THEN delcnt := delcnt + 1;
ELSE upd := updcnt + 1;
END IF;

END;
END audit_emp_pkg;
/

AUDIT_PKG Package
The AUDIT_PKG package declares public package variables (inscnt, updcnt, and
delcnt) that are used to track the number of INSERT, UPDATE, and DELETE
operations performed. In the code example, they are declared publicly for simplicity.
However, it may be better to declare them as private variables to prevent them from being
directly modified. If the variables are declared privately, in the package body, you would
have to provide additional public subprograms to return their values to the user of the
package.
The init procedure is used to initialize the public package variables to zero.
The set procedure accepts three BOOLEAN arguments: i, u, and d for an INSERT,
UPDATE, or DELETE operation, respectively. The appropriate parameter value is set to
TRUE when the trigger that invokes the set procedure is fired during one of the DML
operations. A package variable is incremented by a value of 1, depending on which
argument value is TRUE when the set procedure is invoked.
Note: A DML trigger can fire once for each DML on each row. Therefore, only one of the
three variables passed to the set procedure can be TRUE at a given time. The remaining
two arguments will be set to the value FALSE.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-10

Copyright © 2006, Oracle. All rights reserved.

CREATE TABLE audit_table (
USER_NAME VARCHAR2(30),
TABLE_NAME VARCHAR2(30),
INS NUMBER,
UPD NUMBER,
DEL NUMBER)
/
CREATE OR REPLACE PROCEDURE audit_emp IS
BEGIN
IF delcnt + inscnt + updcnt <> 0 THEN
UPDATE audit_table
SET del = del + audit_emp_pkg.delcnt,

ins = ins + audit_emp_pkg.inscnt,
upd = upd + audit_emp_pkg.updcnt

WHERE user_name = USER
AND table_name = 'EMPLOYEES';
audit_emp_pkg.init;

END IF;
END audit_emp;
/

AUDIT_TABLE Table and
AUDIT_EMP Procedure

AUDIT_TABLE Table and AUDIT_EMP Procedure
The AUDIT_EMP procedure updates the AUDIT_TABLE table and calls the functions in
the AUDIT_EMP_PKG package that reset the package variables, ready for the next DML
statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-11

Copyright © 2006, Oracle. All rights reserved.

ALTER TABLE employees ADD
CONSTRAINT ck_salary CHECK (salary >= 500);

Enforcing Data Integrity Within the Server

Table altered.

Enforcing Data Integrity Within the Server
You can enforce data integrity within the Oracle server and develop triggers to handle
more complex data integrity rules.
The standard data integrity rules are not null, unique, primary key, and foreign key.
Use these rules to:

• Provide constant default values
• Enforce static constraints
• Enable and disable dynamically

Example
The code sample in the slide ensures that the salary is at least $500.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-12

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER check_salary
BEFORE UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.salary < OLD.salary)

BEGIN
RAISE_APPLICATION_ERROR (-20508,

'Do not decrease salary.');
END;
/

Protecting Data Integrity with a Trigger

Protecting Data Integrity with a Trigger
Protect data integrity with a trigger and enforce nonstandard data integrity checks.

• Provide variable default values.
• Enforce dynamic constraints.
• Enable and disable dynamically.
• Incorporate declarative constraints within the definition of a table to protect data

integrity.
Example
The code sample in the slide ensures that the salary is never decreased.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-13

Copyright © 2006, Oracle. All rights reserved.

ALTER TABLE employees
ADD CONSTRAINT emp_deptno_fk
FOREIGN KEY (department_id)

REFERENCES departments(department_id)
ON DELETE CASCADE;

Enforcing Referential Integrity
Within the Server

Enforcing Referential Integrity Within the Server
Incorporate referential integrity constraints within the definition of a table to prevent data
inconsistency and enforce referential integrity within the server.

• Restrict updates and deletes.
• Cascade deletes.
• Enable and disable dynamically.

Example
When a department is removed from the DEPARTMENTS parent table, cascade the
deletion to the corresponding rows in the EMPLOYEES child table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-14

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER cascade_updates

AFTER UPDATE OF department_id ON departments

FOR EACH ROW

BEGIN

UPDATE employees

SET employees.department_id=:NEW.department_id

WHERE employees.department_id=:OLD.department_id;

UPDATE job_history

SET department_id=:NEW.department_id

WHERE department_id=:OLD.department_id;

END;

/

Protecting Referential Integrity
with a Trigger

Protecting Referential Integrity with a Trigger
The following referential integrity rules are not supported by declarative constraints:

• Cascade updates.
• Set to NULL for updates and deletions.
• Set to a default value on updates and deletions.
• Enforce referential integrity in a distributed system.
• Enable and disable dynamically.

You can develop triggers to implement these integrity rules.
Example
Enforce referential integrity with a trigger. When the value of DEPARTMENT_ID changes
in the DEPARTMENTS parent table, cascade the update to the corresponding rows in the
EMPLOYEES child table.
For a complete referential integrity solution using triggers, a single trigger is not enough.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-15

Copyright © 2006, Oracle. All rights reserved.

CREATE MATERIALIZED VIEW emp_copy
NEXT sysdate + 7
AS SELECT * FROM employees@ny;

Replicating a Table Within the Server

Creating a Materialized View
Materialized views enable you to maintain copies of remote data on your local node for
replication purposes. You can select data from a materialized view as you would from a
normal database table or view. A materialized view is a database object that contains the
results of a query, or a copy of some database on a query. The FROM clause of the query of
a materialized view can name tables, views, and other materialized views.
When a materialized view is used, replication is performed implicitly by the Oracle server.
This performs better than using user-defined PL/SQL triggers for replication. Materialized
views:

• Copy data from local and remote tables asynchronously, at user-defined intervals
• Can be based on multiple master tables
• Are read-only by default, unless using the Oracle Advanced Replication feature
• Improve the performance of data manipulation on the master table

Alternatively, you can replicate tables using triggers.
The example in the slide creates a copy of the remote EMPLOYEES table from New York.
The NEXT clause specifies a date time expression for the interval between automatic
refreshes.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-16

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER emp_replica
BEFORE INSERT OR UPDATE ON employees FOR EACH ROW
BEGIN /* Proceed if user initiates data operation,

NOT through the cascading trigger.*/
IF INSERTING THEN
IF :NEW.flag IS NULL THEN
INSERT INTO employees@sf
VALUES(:new.employee_id,...,'B');
:NEW.flag := 'A';

END IF;
ELSE /* Updating. */
IF :NEW.flag = :OLD.flag THEN
UPDATE employees@sf
SET ename=:NEW.last_name,...,flag=:NEW.flag
WHERE employee_id = :NEW.employee_id;

END IF;
IF :OLD.flag = 'A' THEN :NEW.flag := 'B';

ELSE :NEW.flag := 'A';
END IF;
END IF;

END;

Replicating a Table with a Trigger

Replicating a Table with a Trigger
You can replicate a table with a trigger. By replicating a table, you can:

• Copy tables synchronously, in real time
• Base replicas on a single master table
• Read from replicas as well as write to them

Note: Excessive use of triggers can impair the performance of data manipulation on the
master table, particularly if the network fails.

Example
In New York, replicate the local EMPLOYEES table to San Francisco.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-17

Copyright © 2006, Oracle. All rights reserved.

Computing Derived Data Within the Server

UPDATE departments
SET total_sal=(SELECT SUM(salary)

FROM employees
WHERE employees.department_id =

departments.department_id);

Computing Derived Data Within the Server
By using the server, you can schedule batch jobs or use the database Scheduler for the
following scenarios:

• Compute derived column values asynchronously, at user-defined intervals.
• Store derived values only within database tables.
• Modify data in one pass to the database and calculate derived data in a second pass.

Alternatively, you can use triggers to keep running computations of derived data.
Example
Keep the salary total for each department within a special TOTAL_SALARY column of the
DEPARTMENTS table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-18

Copyright © 2006, Oracle. All rights reserved.

CREATE PROCEDURE increment_salary
(id NUMBER, new_sal NUMBER) IS

BEGIN
UPDATE departments
SET total_sal = NVL (total_sal, 0)+ new_sal
WHERE department_id = id;

END increment_salary;

CREATE OR REPLACE TRIGGER compute_salary
AFTER INSERT OR UPDATE OF salary OR DELETE
ON employees FOR EACH ROW
BEGIN
IF DELETING THEN increment_salary(

:OLD.department_id,(-1*:OLD.salary));
ELSIF UPDATING THEN increment_salary(

:NEW.department_id,(:NEW.salary-:OLD.salary));
ELSE increment_salary(

:NEW.department_id,:NEW.salary); --INSERT
END IF;
END;

Computing Derived Values with a Trigger

Computing Derived Data Values with a Trigger
By using a trigger, you can perform the following tasks:

• Compute derived columns synchronously, in real time.
• Store derived values within database tables or within package global variables.
• Modify data and calculate derived data in a single pass to the database.

Example
Keep a running total of the salary for each department in the special TOTAL_SALARY
column of the DEPARTMENTS table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-19

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER notify_reorder_rep
BEFORE UPDATE OF quantity_on_hand, reorder_point
ON inventories FOR EACH ROW
DECLARE
dsc product_descriptions.product_description%TYPE;
msg_text VARCHAR2(2000);
BEGIN
IF :NEW.quantity_on_hand <=

:NEW.reorder_point THEN
SELECT product_description INTO dsc
FROM product_descriptions
WHERE product_id = :NEW.product_id;

_ msg_text := 'ALERT: INVENTORY LOW ORDER:'||
'Yours,' ||CHR(10) ||user || '.'|| CHR(10);

ELSIF :OLD.quantity_on_hand >=
:NEW.quantity_on_hand THEN

msg_text := 'Product #'||... CHR(10);
END IF;
UTL_MAIL.SEND('inv@oracle.com','ord@oracle.com',
message=>msg_text, subject=>'Inventory Notice');

END;

Logging Events with a Trigger

Logging Events with a Trigger
In the server, you can log events by querying data and performing operations manually.
This sends an e-mail message when the inventory for a particular product has fallen below
the acceptable limit. This trigger uses the Oracle-supplied package UTL_MAIL to send the
e-mail message.
Logging Events Within the Server

1. Query data explicitly to determine whether an operation is necessary.
2. Perform the operation, such as sending a message.

Using Triggers to Log Events
1. Perform operations implicitly, such as firing off an automatic electronic memo.
2. Modify data and perform its dependent operation in a single step.
3. Log events automatically as data is changing.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-20

Logging Events with a Trigger (continued)
Logging Events Transparently
In the trigger code:
• CHR(10) is a carriage return
• Reorder_point is not NULL
• Another transaction can receive and read the message in the pipe

Example
CREATE OR REPLACE TRIGGER notify_reorder_rep

BEFORE UPDATE OF amount_in_stock, reorder_point

ON inventory FOR EACH ROW

DECLARE

dsc product.descrip%TYPE;

msg_text VARCHAR2(2000);

BEGIN

IF :NEW.amount_in_stock <= :NEW.reorder_point THEN

SELECT descrip INTO dsc

FROM PRODUCT WHERE prodid = :NEW.product_id;

msg_text := 'ALERT: INVENTORY LOW ORDER:'||CHR(10)||

'It has come to my personal attention that, due to recent'

||CHR(10)||'transactions, our inventory for product # '||

TO_CHAR(:NEW.product_id)||'-- '|| dsc ||

' -- has fallen below acceptable levels.' || CHR(10) ||

'Yours,' ||CHR(10) ||user || '.'|| CHR(10)|| CHR(10);

ELSIF :OLD.amount_in_stock >= :NEW.amount_in_stock THEN

msg_text := 'Product #'|| TO_CHAR(:NEW.product_id)

||' ordered. '|| CHR(10)|| CHR(10);

END IF;

UTL_MAIL.SEND('inv@oracle.com', 'ord@oracle.com',

message => msg_text, subject => 'Inventory Notice');

END; O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units C-21

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use database triggers and database server

functionality to:
– Enhance database security
– Audit data changes
– Enforce data integrity
– Maintain referential integrity
– Replicate data between tables
– Automate computation of derived data
– Provide event-logging capabilities

• Recognize when to use triggers to database
functionality

Summary
This lesson provides some detailed comparison of using the Oracle database server
functionality to implement security, auditing, data integrity, replication, and logging. The
lesson also covers how database triggers can be used to implement the same features but
go further to enhance the features that the database server provides. In some cases, you
must use a trigger to perform some activities (such as computation of derived data)
because the Oracle server cannot know how to implement this kind of business rule
without some programming effort.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Review of PL/SQL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-2

Copyright © 2006, Oracle. All rights reserved.

Block Structure for Anonymous
PL/SQL Blocks

• DECLARE (optional)
– Declare PL/SQL objects to be used within this

block.
• BEGIN (mandatory)

– Define the executable statements.
• EXCEPTION (optional)

– Define the actions that take place if an error or
exception arises.

• END; (mandatory)

Anonymous Blocks
Anonymous blocks do not have names. You declare them at the point in an application
where they are to be run, and they are passed to the PL/SQL engine for execution at run
time.

• The section between the keywords DECLARE and BEGIN is referred to as the
declaration section. In the declaration section, you define the PL/SQL objects such as
variables, constants, cursors, and user-defined exceptions that you want to reference
within the block. The DECLARE keyword is optional if you do not declare any
PL/SQL objects.

• The BEGIN and END keywords are mandatory and enclose the body of actions to be
performed. This section is referred to as the executable section of the block.

• The section between EXCEPTION and END is referred to as the exception section.
The exception section traps error conditions. In it, you define actions to take if a
specified condition arises. The exception section is optional.

The keywords DECLARE, BEGIN, and EXCEPTION are not followed by semicolons, but
END and all other PL/SQL statements do require semicolons.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-3

Copyright © 2006, Oracle. All rights reserved.

Declaring PL/SQL Variables

• Syntax:

• Examples:

identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

Declare
v_hiredate DATE;
v_deptno NUMBER(2) NOT NULL := 10;
v_location VARCHAR2(13) := 'Atlanta';
c_ comm CONSTANT NUMBER := 1400;
v_count BINARY_INTEGER := 0;
v_valid BOOLEAN NOT NULL := TRUE;

Declaring PL/SQL Variables
You need to declare all PL/SQL identifiers within the declaration section before
referencing them within the PL/SQL block. You have the option to assign an initial value.
You do not need to assign a value to a variable in order to declare it. If you refer to other
variables in a declaration, you must be sure to declare them separately in a previous
statement.
In the syntax,

Identifier Is the name of the variable

CONSTANT Constrains the variable so that its value cannot change; constants
must be initialized.

datatype Is a scalar, composite, reference, or LOB data type (This course
covers only scalar and composite data types.)

NOT NULL Constrains the variable so that it must contain a value; NOT
NULL variables must be initialized.

expr Is any PL/SQL expression that can be a literal, another variable, or
an expression involving operators and functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-4

Copyright © 2006, Oracle. All rights reserved.

Declaring Variables with the
%TYPE Attribute

Examples:
...
v_ename employees.last_name%TYPE;
v_balance NUMBER(7,2);
v_min_balance v_balance%TYPE := 10;

...

Declaring Variables with the %TYPE Attribute
Declare variables to store the name of an employee.
...
v_ename employees.last_name%TYPE;
...

Declare variables to store the balance of a bank account, as well as the minimum balance,
which starts out as 10.
...
v_balance NUMBER(7,2);
v_min_balance v_balance%TYPE := 10;
...

A NOT NULL column constraint does not apply to variables declared using %TYPE.
Therefore, if you declare a variable using the %TYPE attribute and a database column
defined as NOT NULL, then you can assign the NULL value to the variable.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-5

Copyright © 2006, Oracle. All rights reserved.

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of
a new employee.
Example:
...
TYPE emp_record_type IS RECORD
(ename VARCHAR2(25),
job VARCHAR2(10),
sal NUMBER(8,2));

emp_record emp_record_type;
...

Creating a PL/SQL Record
Field declarations are like variable declarations. Each field has a unique name and a
specific data type. There are no predefined data types for PL/SQL records, as there are for
scalar variables. Therefore, you must create the data type first and then declare an
identifier using that data type.
The following example shows that you can use the %TYPE attribute to specify a field data
type:
DECLARE

TYPE emp_record_type IS RECORD
(empid NUMBER(6) NOT NULL := 100,
ename employees.last_name%TYPE,
job employees.job_id%TYPE);

emp_record emp_record_type;
...

Note: You can add the NOT NULL constraint to any field declaration to prevent the
assigning of nulls to that field. Remember that fields declared as NOT NULL must be
initialized.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-6

Copyright © 2006, Oracle. All rights reserved.

%ROWTYPE Attribute

Examples:
• Declare a variable to store the same information

about a department as is stored in the
DEPARTMENTS table.

• Declare a variable to store the same information
about an employee as is stored in the EMPLOYEES
table.

dept_record departments%ROWTYPE;

emp_record employees%ROWTYPE;

Examples
The first declaration in the slide creates a record with the same field names and field data
types as a row in the DEPARTMENTS table. The fields are DEPARTMENT_ID,
DEPARTMENT_NAME, MANAGER_ID, and LOCATION_ID.
The second declaration in the slide creates a record with the same field names and field
data types as a row in the EMPLOYEES table. The fields are EMPLOYEE_ID,
FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE, JOB_ID,
SALARY, COMMISSION_PCT, MANAGER_ID, and DEPARTMENT_ID.
In the following example, you select column values into a record named item_record.

DECLARE
job_record jobs%ROWTYPE;
...

BEGIN
SELECT * INTO job_record
FROM jobs
WHERE ...

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-7

Copyright © 2006, Oracle. All rights reserved.

Creating a PL/SQL Table

DECLARE
TYPE ename_table_type IS TABLE OF
employees.last_name%TYPE
INDEX BY BINARY_INTEGER;

TYPE hiredate_table_type IS TABLE OF DATE
INDEX BY BINARY_INTEGER;

ename_table ename_table_type;
hiredate_table hiredate_table_type;

BEGIN
ename_table(1) := 'CAMERON';
hiredate_table(8) := SYSDATE + 7;
IF ename_table.EXISTS(1) THEN
INSERT INTO ...

...

END;

Creating a PL/SQL Table
There are no predefined data types for PL/SQL tables, as there are for scalar variables.
Therefore, you must create the data type first and then declare an identifier using that data
type.
Referencing a PL/SQL Table
Syntax

pl/sql_table_name(primary_key_value)

In this syntax, primary_key_value belongs to the BINARY_INTEGER type.

Reference the third row in a PL/SQL table ENAME_TABLE.

ename_table(3) ...

The magnitude range of a BINARY_INTEGER is –2147483647 to 2147483647. The
primary key value can therefore be negative. Indexing need not start with 1.

Note: The table.EXISTS(i) statement returns TRUE if at least one row with index i
is returned. Use the EXISTS statement to prevent an error that is raised in reference to a
nonexistent table element.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-8

Copyright © 2006, Oracle. All rights reserved.

SELECT Statements in PL/SQL

The INTO clause is mandatory.
Example:
DECLARE
v_deptid NUMBER(4);
v_loc NUMBER(4);

BEGIN
SELECT department_id, location_id
INTO v_deptno, v_loc
FROM departments
WHERE department_name = 'Sales';

...
END;

INTO Clause
The INTO clause is mandatory and occurs between the SELECT and FROM clauses. It is
used to specify the names of variables to hold the values that SQL returns from the
SELECT clause. You must give one variable for each item selected, and the order of
variables must correspond to the items selected.
You use the INTO clause to populate either PL/SQL variables or host variables.
Queries Must Return One and Only One Row
SELECT statements within a PL/SQL block fall into the ANSI classification of Embedded
SQL, for which the following rule applies:
Queries must return one and only one row. More than one row or no row generates an
error.
PL/SQL deals with these errors by raising standard exceptions, which you can trap in the
exception section of the block with the NO_DATA_FOUND and TOO_MANY_ROWS
exceptions. You should code SELECT statements to return a single row.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-9

Copyright © 2006, Oracle. All rights reserved.

Inserting Data

Add new employee information to the EMPLOYEES
table.
Example:

DECLARE
v_empid employees.employee_id%TYPE;

BEGIN
SELECT employees_seq.NEXTVAL
INTO v_empno
FROM dual;
INSERT INTO employees(employee_id, last_name,

job_id, department_id)
VALUES(v_empno, 'HARDING', 'PU_CLERK', 30);

END;

Inserting Data
• Use SQL functions, such as USER and SYSDATE.
• Generate primary key values by using database sequences.
• Derive values in the PL/SQL block.
• Add column default values.

Note: There is no possibility for ambiguity with identifiers and column names in the
INSERT statement. Any identifier in the INSERT clause must be a database column
name.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-10

Copyright © 2006, Oracle. All rights reserved.

Updating Data

Increase the salary of all employees in the EMPLOYEES
table who are purchasing clerks.
Example:
DECLARE
v_sal_increase employees.salary%TYPE := 2000;

BEGIN
UPDATE employees
SET salary = salary + v_sal_increase
WHERE job_id = 'PU_CLERK';

END;

Updating Data
There may be ambiguity in the SET clause of the UPDATE statement because, although
the identifier on the left of the assignment operator is always a database column, the
identifier on the right can be either a database column or a PL/SQL variable.

Remember that the WHERE clause is used to determine which rows are affected. If no rows
are modified, no error occurs (unlike the SELECT statement in PL/SQL).

Note: PL/SQL variable assignments always use := and SQL column assignments always
use =.. Remember that if column names and identifier names are identical in the WHERE
clause, the Oracle server looks to the database first for the name.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-11

Copyright © 2006, Oracle. All rights reserved.

Deleting Data

Delete rows that belong to department 190 from the
EMPLOYEES table.
Example:
DECLARE
v_deptid employees.department_id%TYPE := 190;

BEGIN
DELETE FROM employees
WHERE department_id = v_deptid;

END;

Deleting Data
Delete a specific job:

DECLARE
v_jobid jobs.job_id%TYPE := ‘PR_REP’;

BEGIN
DELETE FROM jobs
WHERE job_id = v_jobid;

END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-12

Copyright © 2006, Oracle. All rights reserved.

COMMIT and ROLLBACK Statements

• Initiate a transaction with the first DML command
to follow a COMMIT or ROLLBACK statement.

• Use COMMIT and ROLLBACK SQL statements to
terminate a transaction explicitly.

Controlling Transactions
You control the logic of transactions with COMMIT and ROLLBACK SQL statements,
rendering some groups of database changes permanent while discarding others. As with
the Oracle server, data manipulation language (DML) transactions start at the first
command to follow a COMMIT or ROLLBACK and end on the next successful COMMIT or
ROLLBACK. These actions may occur within a PL/SQL block or as a result of events in
the host environment. A COMMIT ends the current transaction by making all pending
changes to the database permanent.
Syntax

COMMIT [WORK];
ROLLBACK [WORK];

In this syntax, WORK is for compliance with ANSI standards.
Note: The transaction control commands are all valid within PL/SQL, although the host
environment may place some restriction on their use.
You can also include explicit locking commands (such as LOCK TABLE and SELECT
... FOR UPDATE) in a block. They stay in effect until the end of the transaction. Also,
one PL/SQL block does not necessarily imply one transaction.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-13

Copyright © 2006, Oracle. All rights reserved.

SQL Cursor Attributes

Using SQL cursor attributes, you can test the outcome
of your SQL statements.

Number of rows affected by the most recent
SQL statement (an integer value)
Boolean attribute that evaluates to TRUE if
the most recent SQL statement affects one
or more rows
Boolean attribute that evaluates to TRUE if
the most recent SQL statement does not
affect any rows
Boolean attribute that always evaluates to
FALSE because PL/SQL closes implicit
cursors immediately after they are executed

SQL%ROWCOUNT

SQL%FOUND

SQL%NOTFOUND

SQL%ISOPEN

SQL Cursor Attributes
SQL cursor attributes enable you to evaluate what happened when the implicit cursor was
last used. You use these attributes in PL/SQL statements such as functions. You cannot use
them in SQL statements.
You can use the SQL%ROWCOUNT, SQL%FOUND, SQL%NOTFOUND, and SQL%ISOPEN
attributes in the exception section of a block to gather information about the execution of a
DML statement. In PL/SQL, a DML statement that does not change any rows is not seen
as an error condition, whereas the SELECT statement will return an exception if it cannot
locate any rows.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-14

Copyright © 2006, Oracle. All rights reserved.

IF, THEN, and ELSIF Statements

For a given value entered, return a calculated value.
Example:

. . .
IF v_start > 100 THEN
v_start := 2 * v_start;

ELSIF v_start >= 50 THEN
v_start := 0.5 * v_start;

ELSE
v_start := 0.1 * v_start;

END IF;
. . .

IF, THEN, and ELSIF Statements
When possible, use the ELSIF clause instead of nesting IF statements. The code is easier
to read and understand, and the logic is clearly identified. If the action in the ELSE clause
consists purely of another IF statement, it is more convenient to use the ELSIF clause.
This makes the code clearer by removing the need for nested END IFs at the end of each
further set of conditions and actions.
Example

IF condition1 THEN
statement1;

ELSIF condition2 THEN
statement2;

ELSIF condition3 THEN
statement3;

END IF;

The statement in the slide is further defined as follows:
For a given value entered, return a calculated value. If the entered value is over 100, then
the calculated value is two times the entered value. If the entered value is between 50 and
100, then the calculated value is 50% of the starting value. If the entered value is less than
50, then the calculated value is 10% of the starting value.
Note: Any arithmetic expression containing null values evaluates to null.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-15

Copyright © 2006, Oracle. All rights reserved.

Basic Loop

Example:

DECLARE
v_ordid order_items.order_id%TYPE := 101;
v_counter NUMBER(2) := 1;

BEGIN
LOOP
INSERT INTO order_items(order_id,line_item_id)
VALUES(v_ordid, v_counter);
v_counter := v_counter + 1;
EXIT WHEN v_counter > 10;

END LOOP;
END;

Basic Loop
The basic loop example shown in the slide is defined as follows:
Insert the first 10 new line items for order number 101.
Note: A basic loop enables execution of its statements at least once, even if the condition
has been met upon entering the loop. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-16

Copyright © 2006, Oracle. All rights reserved.

FOR Loop

Insert the first 10 new line items for order number 101.
Example:

DECLARE
v_ordid order_items.order_id%TYPE := 101;

BEGIN
FOR i IN 1..10 LOOP
INSERT INTO order_items(order_id,line_item_id)
VALUES(v_ordid, i);

END LOOP;
END;

FOR Loop
The slide shows a FOR loop that inserts 10 rows into the order_items table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-17

Copyright © 2006, Oracle. All rights reserved.

WHILE Loop

Example:

ACCEPT p_price PROMPT 'Enter the price of the item: '
ACCEPT p_itemtot -
PROMPT 'Enter the maximum total for purchase of item: '

DECLARE
...
v_qty NUMBER(8) := 1;
v_running_total NUMBER(7,2) := 0;
BEGIN

...
WHILE v_running_total < &p_itemtot LOOP
...

v_qty := v_qty + 1;
v_running_total := v_qty * &p_price;
END LOOP;

...

WHILE Loop
In the example in the slide, the quantity increases with each iteration of the loop until the
quantity is no longer less than the maximum price allowed for spending on the item.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-18

Copyright © 2006, Oracle. All rights reserved.

• Return to
FETCH if
rows are
found.

No

Controlling Explicit Cursors

DECLARE

• Create a
named
SQL area.

• Identify
the active
set.

OPEN

• Test for
existing
rows.

EMPTY?

• Release
the active
set.

CLOSEYes

• Load the
current
row into
variables.

FETCH

Explicit Cursors
Controlling Explicit Cursors Using Four Commands

1. Declare the cursor by naming it and defining the structure of the query to be
performed within it.

2. Open the cursor. The OPEN statement executes the query and binds any variables
that are referenced. Rows identified by the query are called the active set and are
now available for fetching.

3. Fetch data from the cursor. The FETCH statement loads the current row from the
cursor into variables. Each fetch causes the cursor to move its pointer to the next row
in the active set. Therefore, each fetch accesses a different row returned by the query.
In the flow diagram in the slide, each fetch tests the cursor for any existing rows. If
rows are found, it loads the current row into variables; otherwise, it closes the cursor.

4. Close the cursor. The CLOSE statement releases the active set of rows. It is now
possible to reopen the cursor to establish a fresh active set.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-19

Copyright © 2006, Oracle. All rights reserved.

Declaring the Cursor

Example:
DECLARE

CURSOR c1 IS
SELECT employee_id, last_name
FROM employees;

CURSOR c2 IS
SELECT *
FROM departments
WHERE department_id = 10;

BEGIN
...

Explicit Cursor Declaration
Retrieve the employees one by one.

DECLARE

v_empid employees.employee_id%TYPE;

v_ename employees.last_name%TYPE;

CURSOR c1 IS

SELECT employee_id, last_name

FROM employees;

BEGIN

...

Note: You can reference variables in the query, but you must declare them before the
CURSOR statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-20

Copyright © 2006, Oracle. All rights reserved.

Opening the Cursor

Syntax:

• Open the cursor to execute the query and identify
the active set.

• If the query returns no rows, no exception is
raised.

• Use cursor attributes to test the outcome after a
fetch.

OPEN cursor_name;

OPEN Statement
Open the cursor to execute the query and identify the result set, which consists of all rows
that meet the query search criteria. The cursor now points to the first row in the result set.
In the syntax, cursor_name is the name of the previously declared cursor.
OPEN is an executable statement that performs the following operations:

1. Dynamically allocates memory for a context area that eventually contains crucial
processing information

2. Parses the SELECT statement
3. Binds the input variables—that is, sets the value for the input variables by obtaining

their memory addresses
4. Identifies the result set—that is, the set of rows that satisfy the search criteria. Rows

in the result set are not retrieved into variables when the OPEN statement is executed.
Rather, the FETCH statement retrieves the rows.

5. Positions the pointer just before the first row in the active set
Note: If the query returns no rows when the cursor is opened, then PL/SQL does not raise
an exception. However, you can test the cursor’s status after a fetch.
For cursors declared by using the FOR UPDATE clause, the OPEN statement also locks
those rows.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-21

Copyright © 2006, Oracle. All rights reserved.

Fetching Data from the Cursor

Examples:

FETCH c1 INTO v_empid, v_ename;

...
OPEN defined_cursor;
LOOP

FETCH defined_cursor INTO defined_variables
EXIT WHEN ...;
...

-- Process the retrieved data
...

END;

FETCH Statement
You use the FETCH statement to retrieve the current row values into output variables.
After the fetch, you can manipulate the variables by further statements. For each column
value returned by the query associated with the cursor, there must be a corresponding
variable in the INTO list. Also, their data types must be compatible. Retrieve the first 10
employees one by one:

DECLARE
v_empid employees.employee_id%TYPE;
v_ename employees.last_name%TYPE;
i NUMBER := 1;
CURSOR c1 IS

SELECT employee_id, last_name
FROM employees;

BEGIN
OPEN c1;
FOR i IN 1..10 LOOP

FETCH c1 INTO v_empid, v_ename;
...

END LOOP;
END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-22

Copyright © 2006, Oracle. All rights reserved.

Closing the Cursor

Syntax:

• Close the cursor after completing the processing
of the rows.

• Reopen the cursor, if required.
• Do not attempt to fetch data from a cursor after it

has been closed.

CLOSE cursor_name;

CLOSE Statement
The CLOSE statement disables the cursor, and the result set becomes undefined. Close the
cursor after completing the processing of the SELECT statement. This step allows the
cursor to be reopened, if required. Therefore, you can establish an active set several times.
In the syntax, cursor_name is the name of the previously declared cursor.
Do not attempt to fetch data from a cursor after it has been closed, or the
INVALID_CURSOR exception will be raised.
Note: The CLOSE statement releases the context area. Although it is possible to terminate
the PL/SQL block without closing cursors, you should always close any cursor that you
declare explicitly in order to free up resources. There is a maximum limit to the number of
open cursors per user, which is determined by the OPEN_CURSORS parameter in the
database parameter field. By default, the maximum number of OPEN_CURSORS is 50.

...
FOR i IN 1..10 LOOP

FETCH c1 INTO v_empid, v_ename; ...
END LOOP;
CLOSE c1;

END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-23

Copyright © 2006, Oracle. All rights reserved.

Explicit Cursor Attributes

Obtain status information about a cursor.

Attribute Type Description

%ISOPEN BOOLEAN Evaluates to TRUE if the cursor
is open

%NOTFOUND BOOLEAN Evaluates to TRUE if the most recent
fetch does not return a row

%FOUND BOOLEAN Evaluates to TRUE if the most recent
fetch returns a row; complement
of %NOTFOUND

%ROWCOUNT NUMBER Evaluates to the total number of
rows returned so far

Explicit Cursor Attributes
As with implicit cursors, there are four attributes for obtaining status information about a
cursor. When appended to the cursor or cursor variable, these attributes return useful
information about the execution of a DML statement.
Note: Do not reference cursor attributes directly in a SQL statement. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-24

Copyright © 2006, Oracle. All rights reserved.

Cursor FOR Loops

Retrieve employees one by one until there are no more
left.
Example:
DECLARE
CURSOR c1 IS
SELECT employee_id, last_name
FROM employees;

BEGIN
FOR emp_record IN c1 LOOP

-- implicit open and implicit fetch occur
IF emp_record.employee_id = 134 THEN
...

END LOOP; -- implicit close occurs
END;

Cursor FOR Loops
A cursor FOR loop processes rows in an explicit cursor. The cursor is opened, rows are
fetched once for each iteration in the loop, and the cursor is closed automatically when all
rows have been processed. The loop itself is terminated automatically at the end of the
iteration where the last row was fetched.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-25

Copyright © 2006, Oracle. All rights reserved.

FOR UPDATE Clause

Retrieve the orders for amounts over $1,000 that were
processed today.
Example:
DECLARE

CURSOR c1 IS
SELECT customer_id, order_id
FROM orders
WHERE order_date = SYSDATE

AND order_total > 1000.00
ORDER BY customer_id
FOR UPDATE NOWAIT;

FOR UPDATE Clause
If the database server cannot acquire the locks on the rows it needs in a SELECT FOR
UPDATE, then it waits indefinitely. You can use the NOWAIT clause in the SELECT FOR
UPDATE statement and test for the error code that returns due to failure to acquire the
locks in a loop. Therefore, you can retry opening the cursor n times before terminating the
PL/SQL block.
If you intend to update or delete rows by using the WHERE CURRENT OF clause, you must
specify a column name in the FOR UPDATE OF clause.
If you have a large table, you can achieve better performance by using the LOCK TABLE
statement to lock all rows in the table. However, when using LOCK TABLE, you cannot
use the WHERE CURRENT OF clause and must use the notation WHERE column =
identifier.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-26

Copyright © 2006, Oracle. All rights reserved.

WHERE CURRENT OF Clause

DECLARE
CURSOR c1 IS

SELECT salary FROM employees
FOR UPDATE OF salary NOWAIT;

BEGIN
...
FOR emp_record IN c1 LOOP

UPDATE ...
WHERE CURRENT OF c1;

...
END LOOP;
COMMIT;

END;

Example:

WHERE CURRENT OF Clause
You can update rows based on criteria from a cursor.
Additionally, you can write your DELETE or UPDATE statement to contain the WHERE
CURRENT OF cursor_name clause to refer to the latest row processed by the FETCH
statement. When you use this clause, the cursor you reference must exist and must contain
the FOR UPDATE clause in the cursor query; otherwise, you get an error. This clause
enables you to apply updates and deletes to the currently addressed row without the need
to explicitly reference the ROWID pseudocolumn.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-27

Copyright © 2006, Oracle. All rights reserved.

Trapping Predefined
Oracle Server Errors

• Reference the standard name in the exception-
handling routine.

• Sample predefined exceptions:
– NO_DATA_FOUND

– TOO_MANY_ROWS

– INVALID_CURSOR

– ZERO_DIVIDE

– DUP_VAL_ON_INDEX

Trapping Predefined Oracle Server Errors
Trap a predefined Oracle server error by referencing its standard name within the
corresponding exception-handling routine.
Note: PL/SQL declares predefined exceptions in the STANDARD package.
It is a good idea to always consider the NO_DATA_FOUND and TOO_MANY_ROWS
exceptions, which are the most common.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-28

Copyright © 2006, Oracle. All rights reserved.

Trapping Predefined
Oracle Server Errors: Example

Syntax:
BEGIN SELECT ... COMMIT;
EXCEPTION

WHEN NO_DATA_FOUND THEN
statement1;
statement2;

WHEN TOO_MANY_ROWS THEN
statement1;

WHEN OTHERS THEN
statement1;
statement2;
statement3;

END;

Trapping Predefined Oracle Server Exceptions: Example
In the example in the slide, a message is printed out to the user for each exception. Only
one exception is raised and handled at any time.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-29

Copyright © 2006, Oracle. All rights reserved.

DECLARE
e_products_invalid EXCEPTION;
PRAGMA EXCEPTION_INIT (

e_products_invalid, -2292);
v_message VARCHAR2(50);

BEGIN
. . .
EXCEPTION
WHEN e_products_invalid THEN
:g_message := 'Product ID

specified is not valid.';
. . .
END;

Non-Predefined Error

Trap for Oracle server error number –2292, which is an
integrity constraint violation.

2

1

3

Trapping a Non-Predefined Oracle Server Exception
1. Declare the name for the exception within the declarative section.

Syntax

exception EXCEPTION;
In this syntax, exception is the name of the exception.

2. Associate the declared exception with the standard Oracle server error number, using
the PRAGMA EXCEPTION_INIT statement.
Syntax

PRAGMA EXCEPTION_INIT(exception, error_number);

In this syntax:
exception Is the previously declared exception
error_number Is a standard Oracle server error number

3. Reference the declared exception within the corresponding exception-handling
routine.
In the slide example: If there is product in stock, halt processing and print a message
to the user.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-30

Copyright © 2006, Oracle. All rights reserved.

User-Defined Exceptions

Example:
[DECLARE]

e_amount_remaining EXCEPTION;
. . .
BEGIN
. . .

RAISE e_amount_remaining;
. . .
EXCEPTION

WHEN e_amount_remaining THEN
:g_message := 'There is still an amount

in stock.';
. . .
END;

1

2

3

Trapping User-Defined Exceptions
You trap a user-defined exception by declaring it and raising it explicitly.

1. Declare the name for the user-defined exception within the declarative section.
Syntax: exception EXCEPTION;
where: exception Is the name of the exception

2. Use the RAISE statement to raise the exception explicitly within the executable
section.
Syntax: RAISE exception;
where: exception Is the previously declared exception

3. Reference the declared exception within the corresponding exception-handling
routine.

In the slide example: This customer has a business rule that states that a product cannot be
removed from its database if there is any inventory left in stock for this product. Because
there are no constraints in place to enforce this rule, the developer handles it explicitly in
the application. Before performing a DELETE on the PRODUCT_INFORMATION table,
the block queries the INVENTORIES table to see whether there is any stock for the
product in question. If there is stock, raise an exception.
Note: Use the RAISE statement by itself within an exception handler to raise the same
exception back to the calling environment.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-31

Copyright © 2006, Oracle. All rights reserved.

RAISE_APPLICATION_ERROR Procedure

Syntax:

• Enables you to issue user-defined error messages
from stored subprograms

• Is called from an executing stored subprogram
only

raise_application_error (error_number,
message[, {TRUE | FALSE}]);

RAISE_APPLICATION_ERROR Procedure
Use the RAISE_APPLICATION_ERROR procedure to communicate a predefined
exception interactively by returning a nonstandard error code and error message. With
RAISE_APPLICATION_ERROR, you can report errors to your application and avoid
returning unhandled exceptions.
In the syntax, error_number is a user-specified number for the exception between
–20000 and –20999. The message is the user-specified message for the exception. It is a
character string that is up to 2,048 bytes long.
TRUE | FALSE is an optional Boolean parameter. If TRUE, the error is placed on the stack
of previous errors. If FALSE (the default), the error replaces all previous errors.
Example:

...
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20201,
'Manager is not a valid employee.');

END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units D-32

Copyright © 2006, Oracle. All rights reserved.

RAISE_APPLICATION_ERROR Procedure

• Is used in two different places:
– Executable section
– Exception section

• Returns error conditions to the user in a manner
consistent with other Oracle server errors

RAISE_APPLICATION_ERROR Procedure: Example
...
DELETE FROM employees
WHERE manager_id = v_mgr;
IF SQL%NOTFOUND THEN

RAISE_APPLICATION_ERROR(-20202,
'This is not a valid manager');

END IF;
...

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

JDeveloper

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-2

Copyright © 2006, Oracle. All rights reserved.

JDeveloper

JDeveloper
Oracle JDeveloper 10g is an integrated development environment (IDE) for developing and
deploying Java applications and Web services. It supports every stage of the software
development life cycle (SDLC) from modeling to deploying. It has the features to use the latest
industry standards for Java, Extensible Markup Language (XML), and SQL while developing an
application.
Oracle JDeveloper 10g initiates a new approach to J2EE development with the features that
enables visual and declarative development. This innovative approach makes J2EE development
simple and efficient.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-3

Copyright © 2006, Oracle. All rights reserved.

Connection Navigator

Connection Navigator
Using Oracle JDeveloper 10g, you can store the information necessary to connect to a database
in an object called “connection.” A connection is stored as part of the IDE settings, and can be
exported and imported for easy sharing among groups of users. A connection serves several
purposes from browsing the database and building applications, all the way through to
deployment. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-4

Copyright © 2006, Oracle. All rights reserved.

Application Navigator

Application Navigator
The Application Navigator gives you a logical view of your application and the data it contains.
The Application Navigator provides an infrastructure that the different extensions can plug into
and use to organize their data and menus in a consistent, abstract manner. While the Application
Navigator can contain individual files (such as Java source files), it is designed to consolidate
complex data. Complex data types such as entity objects, UML (Unified Modeling Language)
diagrams, Enterprise JavaBeans (EJB), or Web services appear in this navigator as single nodes.
The raw files that make up these abstract nodes appear in the Structure window.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-5

Copyright © 2006, Oracle. All rights reserved.

Structure Window

Structure Window
The Structure window offers a structural view of the data in the document currently selected in
the active window of those windows that participate in providing structure: the navigators, the
editors and viewers, and the Property Inspector.
In the Structure window, you can view the document data in a variety of ways. The structures
available for display are based upon document type. For a Java file, you can view code structure,
user interface (UI) structure, or UI model data. For an XML file, you can view XML structure,
design structure, or UI model data.
The Structure window is dynamic, always tracking the current selection of the active window
(unless you freeze the window’s contents on a particular view), as is pertinent to the currently
active editor. When the current selection is a node in the navigator, the default editor is assumed.
To change the view on the structure for the current selection, select a different structure tab.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-6

Copyright © 2006, Oracle. All rights reserved.

Editor Window

Editor Window
You can view all your project files in one single editor window, you can open multiple views of
the same file, or you can open multiple views of different files.
The tabs at the top of the editor window are the document tabs. Selecting a document tab gives
that file focus, bringing it to the foreground of the window in the current editor.
The tabs at the bottom of the editor window for a given file are the editor tabs. Selecting an
editor tab opens the file in that editor.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-7

Copyright © 2006, Oracle. All rights reserved.

Deploying Java Stored Procedures

Before deploying Java stored procedures, perform the
following steps:
1. Create a database connection.
2. Create a deployment profile.
3. Deploy the objects.

1 2 3

Deploying Java Stored Procedures
Create a deployment profile for Java stored procedures, then deploy the classes and, optionally,
any public static methods in JDeveloper using the settings in the profile.
Deploying to the database uses the information provided in the Deployment Profile Wizard and
two Oracle Database utilities:
• loadjava loads the Java class containing the stored procedures to an Oracle database.
• publish generates the PL/SQL call specific wrappers for the loaded public static

methods. Publishing enables the Java methods to be called as PL/SQL functions or
procedures.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-8

Copyright © 2006, Oracle. All rights reserved.

Publishing Java to PL/SQL

Publishing Java to PL/SQL
The slide shows the Java code and how to publish the Java code in a PL/SQL procedure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-9

Copyright © 2006, Oracle. All rights reserved.

Creating Program Units

Skeleton of the function

Creating Program Units
To create a PL/SQL program unit:

1. Select View > Connection Navigator.
2. Expand Database and select a database connection.
3. In the connection, expand a schema.
4. Right-click a folder corresponding to the object type (Procedures, Packages, and

Functions).
5. Choose New PL/SQL object_type. The Create PL/SQL dialog box appears for the function,

package, or procedure.
6. Enter a valid name for the function, package, or procedure, and click OK.

A skeleton definition will be created and opened in the Code Editor. You can then edit the
subprogram to suit your need.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-10

Copyright © 2006, Oracle. All rights reserved.

Compiling

Compilation with errors

Compilation without errors

Compiling
After editing the skeleton definition, you need to compile the program unit. Right-click the
PL/SQL object that you need to compile in the Connection Navigator and then select Compile.
Alternatively, you can also press [CTRL] + [SHIFT] + [F9] to compile.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-11

Copyright © 2006, Oracle. All rights reserved.

Running a Program Unit

Running a Program Unit
To execute the program unit, right-click the object and click Run. The Run PL/SQL dialog box
appears. You may need to change the NULL values with reasonable values that are passed into
the program unit. After you change the values, click OK. The output will be displayed in the
Message-Log window.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-12

Copyright © 2006, Oracle. All rights reserved.

Dropping a Program Unit

Dropping a Program Unit
To drop a program unit, right-click the object and select Drop. The Drop Confirmation dialog
box appears; click Yes. The object will be dropped from the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-13

Copyright © 2006, Oracle. All rights reserved.

Debugging PL/SQL Programs

• JDeveloper support two types of debugging:
– Local
– Remote

• You need the following privileges to perform
PL/SQL debugging:
– DEBUG ANY PROCEDURE

– DEBUG CONNECT SESSION

Debugging PL/SQL Programs
JDeveloper offers both local and remote debugging. A local debugging session is started by
setting breakpoints in source files, and then starting the debugger. Remote debugging requires
two JDeveloper processes: a debugger and a debuggee, which may reside on a different
platform.
To debug a PL/SQL program, it must be compiled in INTERPRETED mode. You cannot debug
a PL/SQL program that is compiled in NATIVE mode. This mode is set in the database’s
init.ora file.
PL/SQL programs must be compiled with the DEBUG option enabled. This option can be enabled
using various ways. Using SQL*Plus, execute ALTER SESSION SET PLSQL_DEBUG =
true to enable the DEBUG option. Then you can create or recompile the PL/SQL program you
want to debug. Another way of enabling the DEBUG option is by using the following command
in SQL*Plus:

ALTER <procedure, function, package> <name> COMPILE DEBUG;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-14

Copyright © 2006, Oracle. All rights reserved.

Debugging PL/SQL Programs

Debugging PL/SQL Programs (continued)
Before you start with debugging, make sure that the Generate PL/SQL Debug Information check
box is selected. You can access the dialog box by using Tools > Preferences > Database
Connections.
Instead of manually testing PL/SQL functions and procedures as you may be accustomed to
doing from within SQL*Plus or by running a dummy procedure in the database, JDeveloper
enables you to test these objects in an automatic way. With this release of JDeveloper, you can
run and debug PL/SQL program units. For example, you can specify parameters being passed or
return values from a function giving you more control over what is run and providing you output
details about what was tested.
Note: The procedures or functions in the Oracle database can be either stand-alone or within a
package.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-15

Debugging PL/SQL Programs (continued)
To run or debug functions, procedures, or packages, perform the following steps:

1. Create a database connection by using the Database Wizard.
2. In the Navigator, expand the Database node to display the specific database username and

schema name.
3. Expand the Schema node.
4. Expand the appropriate node depending on what you are debugging: Procedure, Function,

or Package body.
5. (Optional for debugging only) Select the function, procedure, or package that you want to

debug and double-click to open it in the Code Editor.
6. (Optional for debugging only) Set a breakpoint in your PL/SQL code by clicking to the left

of the margin.
Note: The breakpoint must be set on an executable line of code. If the debugger does not
stop, the breakpoint may have not been set on an executable line of code (ensure that the
breakpoint was verified). Also, verify that the debugging PL/SQL prerequisites were met.
In particular, make sure that the PL/SQL program is compiled in INTERPRETED mode.

7. Make sure that either the Code Editor or the procedure in the Navigator is currently
selected.

8. Click the Debug toolbar button; or, if you want to run without debugging, click the Run
toolbar button.

9. The Run PL/SQL dialog box is displayed.
- Select a target that is the name of the procedure or function that you want to debug.

Note that the content in the Parameters and PL/SQL Block boxes change dynamically
when the target changes.
Note: You will have a choice of target only if you choose to run or debug a package
that contains more than one program unit.

- The Parameters box lists the target’s arguments (if applicable).
- The PL/SQL Block box displays code that was custom-generated by JDeveloper for

the selected target. Depending on what the function or procedure does, you may need
to replace the NULL values with reasonable values so that these are passed into the
procedure, function, or package. In some cases, you may need to write additional
code to initialize values to be passed as arguments. In this case, you can edit the
PL/SQL block text as necessary.

10. Click OK to execute or debug the target.
11. Analyze the output information displayed in the Log window.

In the case of functions, the return value will be displayed. DBMS_OUTPUT messages will also
be displayed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-16

Copyright © 2006, Oracle. All rights reserved.

Setting Breakpoints

Setting Breakpoints
Breakpoints help you to examine the values of the variables in your program. It is a trigger in a
program that, when reached, pauses program execution allowing you to examine the values of
some or all of the program variables. By setting breakpoints in potential problem areas of your
source code, you can run your program until its execution reaches a location you want to debug.
When your program execution encounters a breakpoint, the program pauses, and the debugger
displays the line containing the breakpoint in the Code Editor. You can then use the debugger to
view the state of your program. Breakpoints are flexible in that they can be set before you begin
a program run or at any time while you are debugging.
To set a breakpoint in the Code Editor, click the left margin next to a line of executable code.
Breakpoints set on comment lines, blank lines, declaration, and any other nonexecutable lines of
code are not verified by the debugger and are treated as invalid.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-17

Copyright © 2006, Oracle. All rights reserved.

Stepping Through Code

Debug Resume

Stepping Through Code
After setting the breakpoint, start the debugger by clicking the Debug icon. The debugger will
pause the program execution at the point where the breakpoint is set. At this point, you can check
the values of the variables. You can continue with the program execution by clicking the Resume
icon. The debugger will then move on to the next breakpoint. After executing all the breakpoints,
the debugger will stop the execution of the program and display the results in the Debugging –
Log area.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-18

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Data window

Examining and Modifying Variables
When the debugger is ON, you can examine and modify the value of the variables using the
Data, Smart Data, and Watches windows. You can modify program data values during a
debugging session as a way to test hypothetical bug fixes during a program run. If you find that a
modification fixes a program error, you can exit the debugging session, fix your program code
accordingly, and recompile the program to make the fix permanent.
You use the Data window to display information about variables in your program. The Data
window displays the arguments, local variables, and static fields for the current context, which is
controlled by the selection in the Stack window. If you move to a new context, the Data window
is updated to show the data for the new context. If the current program was compiled without
debug information, you will not be able to see the local variables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-19

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Smart Data window

Examining and Modifying Variables (continued)
Unlike the Data window that displays all the variables in your program, the Smart Data window
displays only the data that is relevant to the source code that you are stepping through.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-20

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Watches window

Examining and Modifying Variables (continued)
A watch enables you to monitor the changing values of variables or expressions as your program
runs. After you enter a watch expression, the Watch window displays the current value of the
expression. As your program runs, the value of the watch changes as your program updates the
values of the variables in the watch expression.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-21

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Stack window

Examining and Modifying Variables (continued)
You can activate the Stack window by using View > Debugger > Stack. It displays the call stack
for the current thread. When you select a line in the Stack window, the Data window, Watch
window, and all other windows are updated to show data for the selected class.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units E-22

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Classes window

Examining and Modifying Variables (continued)
The Classes window displays all the classes that are currently being loaded to execute the
program. If used with Oracle Java Virtual Machine (OJVM), it also shows the number of
instances of a class and the memory used by those instances.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Using SQL Developer

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do
the following:
• List the key features of Oracle SQL Developer
• Install Oracle SQL Developer
• Identify menu items of Oracle SQL Developer
• Create a database connection
• Manage database objects
• Use the SQL Worksheet
• Execute SQL statements and SQL scripts
• Edit and debug PL/SQL statements
• Create and save reports

Objectives
This appendix introduces the graphical tool SQL Developer that simplifies your database
development tasks. You learn how to use SQL Worksheet to execute SQL statements and
SQL scripts. You also learn how to edit and debug PL/SQL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-3

Copyright © 2006, Oracle. All rights reserved.

What Is Oracle SQL Developer?

• Oracle SQL Developer is a graphical tool that
enhances productivity and simplifies database
development tasks.

• You can connect to any target Oracle database
schema by using standard Oracle database
authentication.

SQL Developer

What Is Oracle SQL Developer?
Oracle SQL Developer is a free graphical tool designed to improve your productivity and
simplify the development of everyday database tasks. With just a few clicks, you can easily
create and debug stored procedures, test SQL statements, and view optimizer plans.
SQL Developer, the visual tool for database development, simplifies the following tasks:

• Browsing and managing database objects
• Executing SQL statements and scripts
• Editing and debugging PL/SQL statements
• Creating reports

You can connect to any target Oracle database schema by using standard Oracle database
authentication. When connected, you can perform operations on objects in the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-4

Copyright © 2006, Oracle. All rights reserved.

Key Features

• Developed in Java
• Supports Windows, Linux, and Mac OS X platforms
• Default connectivity by using the JDBC Thin driver
• Does not require an installer
• Connects to any Oracle Database version 9.2.0.1 and

later
• Bundled with JRE 1.5

Key Features of SQL Developer
Oracle SQL Developer is developed in Java leveraging the Oracle JDeveloper integrated
development environment (IDE). The tool runs on Windows, Linux, and Mac operating
system (OS) X platforms. You can install SQL Developer on the Database Server and
connect remotely from your desktop, thus avoiding client/server network traffic.
Default connectivity to the database is through the Java Database Connectivity (JDBC) Thin
driver, so no Oracle Home is required. SQL Developer does not require an installer and you
need to simply unzip the downloaded file.
With SQL Developer, users can connect to Oracle Databases 9.2.0.1 and later, and all Oracle
database editions including Express Edition. SQL Developer is bundled with Java Runtime
Environment (JRE) 1.5, with an additional tools.jar to support Windows clients. Non-
Windows clients need only Java Development Kit (JDK) 1.5.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-5

Copyright © 2006, Oracle. All rights reserved.

Installing SQL Developer

Download the Oracle SQL Developer kit and unzip it
into any directory on your machine.

Installing SQL Developer
Oracle SQL Developer does not require an installer. To install SQL Developer, you need an
unzip tool.
To install SQL Developer, perform the following steps:

1. Create a folder as <local drive>:\SQL Developer.
2. Download the SQL Developer kit from:

http://www.oracle.com/technology/software/products/sql/index.html
3. Unzip the downloaded SQL Developer kit into the folder created in step 1.

To start SQL Developer, go to <local drive>:\SQL Developer, and double-click
sqldeveloper.exe.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-6

Copyright © 2006, Oracle. All rights reserved.

Menus for SQL Developer

1

2

3

4

5

6

Menus for SQL Developer
SQL Developer has two main navigation tabs:

• Connections Navigator: By using this tab, you can browse database objects and users
to which you have access.

• Reporting Tab: By using this tab, you can run predefined reports or create and add
your own reports.

SQL Developer uses the left side for navigation to find and select objects, and the right side
to display information about selected objects. You can customize many aspects of the
appearance and behavior of SQL Developer by setting preferences.
The menus at the top contain standard entries, plus entries for features specific to SQL
Developer.

1. View: Contains options that affect what is displayed in the SQL Developer interface
2. Navigate: Contains options for navigating to panes and in the execution of

subprograms
3. Run: Contains the Run File and Execution Profile options that are relevant when a

function or procedure is selected
4. Debug: Contains options relevant when a function or procedure is selected
5. Source: Contains options for use when editing functions and procedures
6. Tools: Invokes SQL Developer tools such as SQL*Plus, Preferences, and SQL

Worksheet

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-7

Copyright © 2006, Oracle. All rights reserved.

Creating a Database Connection

• You must have at least one database connection to
use SQL Developer.

• You can create and test connections:
– For multiple databases
– For multiple schemas

• SQL Developer automatically imports any connections
defined in the tnsnames.ora file on your system.

• You can export connections to an XML file.
• Each additional database connection created is listed

in the Connections Navigator hierarchy.

Creating a Database Connection
A connection is a SQL Developer object that specifies the necessary information for
connecting to a specific database as a specific user of that database. To use SQL Developer,
you must have at least one database connection, which may be existing, created, or
imported.
You can create and test connections for multiple databases and for multiple schemas.
By default, the tnsnames.ora file is located in the
$ORACLE_HOME/network/admin directory. But, it can also be in the directory
specified by the TNS_ADMIN environment variable or registry value. When you start SQL
Developer and display the Database Connections dialog box, SQL Developer automatically
imports any connections defined in the tnsnames.ora file on your system.
Note: On Windows systems, if the tnsnames.ora file exists but its connections are not
being used by SQL Developer, define TNS_ADMIN as a system environment variable.
You can export connections to an XML file so that you can reuse it later.
You can create additional connections as different users to the same database or to connect
to the different databases.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-8

Copyright © 2006, Oracle. All rights reserved.

Creating a Database Connection

Creating a Database Connection (continued)
To create a database connection, perform the following steps:

1. Double-click <your_path>\sqldeveloper\sqldeveloper.exe.
2. On the Connections tabbed page, right-click Connections and select New Database

Connection.
3. Enter the connection name, username, password, hostname, and SID for the database

you want to connect.
4. Click Test to make sure that the connection has been set correctly.
5. Click Connect.

On the basic tabbed page, at the bottom, enter the following options:
• Hostname: Host system for the Oracle database
• Port: Listener port
• SID: Database name
• Service Name: Network service name for a remote database connection

If you select the Save Password check box, the password is saved to an XML file. So, after
you close the SQL Developer connection and open it again, you will not be prompted for
the password.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-9

Copyright © 2006, Oracle. All rights reserved.

Browsing Database Objects

Use the Database Navigator to:
• Browse through many objects in a database

schema
• Review the definitions of objects at a glance

Browsing Database Objects
After you have created a database connection, you can use the Database Navigator to browse
through many objects in a database schema including Tables, Views, Indexes, Packages,
Procedures, Triggers, Types, and so on.
SQL Developer uses the left side for navigation to find and select objects, and the right side
to display information about the selected objects. You can customize many aspects of the
appearance of SQL Developer by setting preferences.
You can see the definition of the objects broken into tabs of information that is pulled out of
the data dictionary. For example, if you select a table in the Navigator, the details about
columns, constraints, grants, statistics, triggers, and so on are displayed in an easy-to-read
tabbed page.
If you want to see the definition of the EMPLOYEES table as shown in the slide, perform the
following steps:

1. Expand the Connections node in the Connections Navigator.
2. Expand Tables.
3. Double-click EMPLOYEES.

Using the Data tab, you can enter new rows, update data, and commit these changes to the
database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-10

Copyright © 2006, Oracle. All rights reserved.

Creating a Schema Object

• SQL Developer supports the creation of any schema
object by:
– Executing a SQL statement in the SQL Worksheet
– Using the context menu

• Edit the objects using an edit dialog box or one of the
many context-sensitive menus.

• View the DDL for adjustments such as creating a new
object or editing an existing schema object.

Creating a Schema Object
SQL Developer supports the creation of any schema object by executing a SQL statement in
the SQL Worksheet. Alternatively, you can create objects using the context menus. After the
objects are created, you can edit the objects using an edit dialog box or one of the many
context-sensitive menus.
As new objects are created or existing objects are edited, the data definition language (DDL)
for those adjustments is available for review. An Export DDL option is available if you want
to create the full DDL for one or more objects in the schema.
The slide shows creating a table using the context menu. To open a dialog box for creating a
new table, right-click Tables and select Create TABLE. The dialog boxes for creating and
editing database objects have multiple tabs, each reflecting a logical grouping of properties
for that type of object.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-11

Copyright © 2006, Oracle. All rights reserved.

Creating a New Table: Example

Creating a New Table: Example
In the Create Table dialog box, if you do not select the Show Advanced Options check box,
you can create a table quickly by specifying columns and some frequently used features.
If you select the Show Advanced Options check box, the Create Table dialog box changes
to one with multiple tabs, in which you can specify an extended set of features while
creating the table.
The example in the slide shows creating the DEPENDENTS table by selecting the Show
Advanced Options check box.
To create a new table, perform the following steps:

1. In the Connections Navigator, right-click Tables.
2. Select Create TABLE.
3. In the Create Table dialog box, select Show Advanced Options.
4. Specify column information.
5. Click OK.

Although it is not required, you should also specify a primary key using the Primary Key tab
in the dialog box. Sometimes, you may want to edit the table that you have created. To edit a
table, right-click the table in the Connections Navigator, and select Edit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-12

Copyright © 2006, Oracle. All rights reserved.

Using the SQL Worksheet

• Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL *Plus statements.

• Specify any actions that can be processed by the
database connection associated with the worksheet.

Using the SQL Worksheet
When you connect to a database, a SQL Worksheet window for that connection is
automatically opened. You can use the SQL Worksheet to enter and execute SQL, PL/SQL,
and SQL*Plus statements. The SQL Worksheet supports SQL*Plus statements to a certain
extent. SQL*Plus statements that are not supported by the SQL Worksheet are ignored and
not passed to the database.
You can specify any actions that can be processed by the database connection associated
with the worksheet, such as:

• Creating a table
• Inserting data
• Creating and editing a trigger
• Selecting data from a table
• Saving the selected data to a file

You can display a SQL Worksheet by using any of the following two options:
• Select Tools > SQL Worksheet
• Click the Open SQL Worksheet icon.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-13

Copyright © 2006, Oracle. All rights reserved.

Using the SQL Worksheet

1

2

3

4

5

6

7 8

Using the SQL Worksheet (continued)
You may want to use shortcut keys or icons to perform certain tasks such as executing a
SQL statement, running a script, and viewing the history of SQL statements that you have
executed. You can use the SQL Worksheet toolbar that contains icons to perform the
following tasks:

1. Execute Statement: Executes the statement at the cursor in the Enter SQL Statement
box. You can use bind variables in the SQL statements but not substitution variables.

2. Run Script: Executes all statements in the Enter SQL Statement box using the Script
Runner. You can use substitution variables in the SQL statements but not bind
variables.

3. Commit: Writes any changes to the database, and ends the transaction
4. Rollback: Discards any changes to the database, without writing them to the database,

and ends the transaction
5. Cancel: Stops the execution of any statements currently being executed
6. SQL History: Displays a dialog box with information about SQL statements that you

have executed
7. Execute Explain Plan: Generates the execution plan, which you can see by clicking

the Explain tab
8. Clear: Erases the statement or statements in the Enter SQL Statement box

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-14

Copyright © 2006, Oracle. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or
multiple SQL statements.

Executing SQL Statements
In the SQL Worksheet, you can use the Enter SQL Statement box to type a single or
multiple SQL statements. For a single statement, the semicolon at the end is optional.
When you type in the statement, the SQL keywords are automatically highlighted. To
execute a SQL statement, ensure that your cursor is within the statement and click the
Execute Statement icon. Alternatively, you can press the F9 key.
To execute multiple SQL statements and see the results, click the Run Script icon.
Alternatively, you can press the F5 key.
In the example in the slide, because there are multiple SQL statements, the first statement is
terminated with a semicolon. The cursor is in the first statement and so when the statement
is executed, results corresponding to the first statement are displayed in the Results box.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-15

Copyright © 2006, Oracle. All rights reserved.

Viewing the Execution Plan

Viewing the Execution Plan
You can execute a SQL script, and view the execution plan. To execute a SQL script file,
perform the following steps:

1. Right-click in the Enter SQL Statement box, and select Open File from the drop-down
menu.

2. In the Open dialog box, double-click the .sql file.
3. Click the Run Script icon.

When you double-click the .sql file, the SQL statements are loaded into the Enter SQL
Statement box. You can execute the script or each line individually. The results are
displayed in the Script Output area.
The example in the slide shows the execution plan. The Execute Explain Plan icon generates
the execution plan. An execution plan is the sequence of operations that will be performed to
execute the statement. You can see the execution plan by clicking the Explain tab.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-16

Copyright © 2006, Oracle. All rights reserved.

Formatting the SQL Code

Before
formatting

After
formatting

Formatting the SQL Code
You may want to beautify the indentation, spacing, capitalization, and line separation of the
SQL code. SQL Developer has the feature of formatting the SQL code.
To format the SQL code, right-click in the statement area, and select Format SQL.
In the example in the slide, before formatting, the SQL code has the keywords not
capitalized and the statement not properly indented. After formatting, the SQL code is
beautified with the keywords capitalized and the statement properly indented.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-17

Copyright © 2006, Oracle. All rights reserved.

Using Snippets

Snippets are code fragments that may be just syntax
or examples.

Using Snippets
You may want to use certain code fragments when you are using the SQL Worksheet or
creating or editing a PL/SQL function or procedure. SQL Developer has the feature called
Snippets. Snippets are code fragments, such as SQL functions, Optimizer hints, and
miscellaneous PL/SQL programming techniques. You can drag snippets into the Editor
window.
To display Snippets, select View > Snippets.
The Snippets window is displayed on the right side. You can use the drop-down list to select
a group. A Snippets button is placed in the right window margin, so that you can display the
Snippets window if it becomes hidden.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-18

Copyright © 2006, Oracle. All rights reserved.

Using Snippets: Example

Inserting a
snippet

Editing the
snippet

Using Snippets: Example
To insert a Snippet into your code in a SQL Worksheet or in a PL/SQL function or
procedure, drag the snippet from the Snippets window into the desired place in your code.
Then you can edit the syntax so that the SQL function is valid in the current context. To see
a brief description of a SQL function in a tool tip, place the cursor over the function name.
The example in the slide shows that CONCAT(char1, char2)is dragged from the
Character Functions group in the Snippets window. Then the CONCAT function syntax is
edited and the rest of the statement is added such as in the following:

SELECT CONCAT(first_name, last_name)
FROM employees;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-19

Copyright © 2006, Oracle. All rights reserved.

Using SQL*Plus

• The SQL Worksheet does not support all SQL*Plus
statements.

• You can invoke the SQL*Plus command-line interface
from SQL Developer.

Using SQL*Plus
The SQL Worksheet supports some SQL*Plus statements. SQL*Plus statements must be
interpreted by the SQL Worksheet before being passed to the database; any SQL*Plus
statements that are not supported by the SQL Worksheet are ignored and not passed to the
database. For example, some of the SQL*Plus statements that are not supported by SQL
Worksheet are:
• append
• archive
• attribute
• break

For the complete list of SQL*Plus statements that are supported, and not supported by SQL
Worksheet, refer to SQL Developer online Help.
To display the SQL*Plus command window, from the Tools menu, select SQL*Plus. To use
this feature, the system on which you are using SQL Developer must have an Oracle Home
directory or folder, with a SQL*Plus executable under that location. If the location of the
SQL*Plus executable is not already stored in your SQL Developer preferences, you are
asked to specify its location.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-20

Copyright © 2006, Oracle. All rights reserved.

Creating an Anonymous Block

Create an anonymous block and display the output of
the DBMS_OUTPUT package statements.

Creating an Anonymous Block
You can create an anonymous block and display the output of the DBMS_OUTPUT package
statements. To create an anonymous block and view the results, perform the following steps:

1. Enter the PL/SQL code in the Enter SQL Statement box.
2. Click the DBMS Output pane. Then click the Enable DBMS Output icon to set the

server output ON.
3. Click the Execute Statement icon above the Enter SQL Statement box. Then click the

DBMS Output pane to see the results.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-21

Copyright © 2006, Oracle. All rights reserved.

Editing the PL/SQL Code

Use the full-featured editor for PL/SQL program units.

Editing the PL/SQL Code
You may want to make changes to your PL/SQL code. SQL Developer includes a
full-featured editor for PL/SQL program units. It includes customizable PL/SQL syntax
highlighting in addition to common editor functions such as:

• Bookmarks
• Code Completion
• Code Folding
• Search and Replace

To edit the PL/SQL code, click the object name in the Connections Navigator, and then
click the Edit icon. Optionally, double-click the object name to invoke the Object Definition
page with its tabs and the Edit page. You can update only if you are on the Edit tabbed page.
The Code Insight feature is shown in the slide. For example, if you type DBMS_OUTPUT.and
then press [Ctrl] + [Spacebar], you can select from a list of members of that package. Note
that, by default, Code Insight is invoked automatically if you pause after typing a period
(“.”) for more than one second.
When using the Code Editor to edit PL/SQL code, you can Compile or Compile for Debug.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-22

Copyright © 2006, Oracle. All rights reserved.

Creating a PL/SQL Procedure

1

2

Creating a PL/SQL Procedure
Using SQL Developer, you can create PL/SQL functions, procedures, and packages. To
create a PL/SQL procedure, perform the following steps:

1. Right-click the Procedures node in the Connections Navigator to invoke the Context
menu, and select Create Procedure.

2. In the Create Procedure dialog box, specify the procedure information and click OK.
Note: Ensure that you press Enter before you click OK.
In the example in the slide, the EMP_LIST procedure is created. The default values for
parameter name and parameter type are replaced with pMaxRows and NUMBER,
respectively.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-23

Copyright © 2006, Oracle. All rights reserved.

Compiling a PL/SQL Procedure

Compiling a PL/SQL Procedure
After you specify the parameter information in the Create Procedure dialog box and click
OK, you see the Procedure tab added in the right window. You can then replace the
Anonymous block with your PL/SQL code.
To compile the PL/SQL subprogram, click the Save button in the toolbar. If you expand
Procedures in the Connections Navigator, you can see that the Procedure node is added.
When an invalid PL/SQL subprogram is detected by SQL Developer, the status is indicated
with a red X over the icon for the subprogram in the Connections Navigator. Compilation
errors are shown in the log window. You can navigate to the line reported in the error by
simply double-clicking the error. SQL Developer also displays errors and hints in the right-
hand gutter. If you place the cursor over each of the red bars in the gutter, the error message
appears. For example, if the error messages indicate that there is a formatting error, modify
the code accordingly and click the Compile icon.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-24

Copyright © 2006, Oracle. All rights reserved.

Running a PL/SQL Procedure

Running a PL/SQL Procedure
After you have created and compiled a PL/SQL procedure, you can run it using SQL
Developer. To run a PL/SQL procedure, right-click the procedure name in the left navigator
and select Run. Optionally, you can use the Run button in the right window. This invokes
the Run PL/SQL dialog box. The Run PL/SQL dialog box enables you to select the target
procedure or function to run and displays a list of parameters for the selected target.
You can use the PL/SQL block area to populate parameters to be passed to the program unit
and to handle complex return types. After you make the necessary changes in the Run
PL/SQL dialog box, click OK. You see the expected results in the Running-Log window.
In the example in the slide, PMAXROWS := NULL; is changed to PMAXROWS := 5;.
The results of the five rows returned are displayed in the Running-Log window.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-25

Copyright © 2006, Oracle. All rights reserved.

Debugging PL/SQL

Debugging PL/SQL
You may want to debug a PL/SQL function, procedure, or package. SQL Developer
provides full support for PL/SQL debugging. To debug a function or procedure, perform the
following steps:

1. Click the object name in the Connections Navigator.
2. Right-click the object and select Compile for debug.
3. Click the Edit icon. Then click the Debug icon above its source listing.

If the toggle numbers before each line of code is not yet displayed, right-click in the Code
Editor margin and select Toggle Line Numbers.
The PL/SQL debugger supplies many commands to control program execution including
Step Into, Step Over, Step Out, Run to Cursor, and so on. While the debugger is paused, you
can examine and modify the values of variables from the Smart Data, Watches, or Inspector
windows.
The Breakpoints window lists the defined breakpoints. You can use this window to add new
breakpoints, or customize the behavior of existing breakpoints.
Note: For PL/SQL debugging, you need the debug any procedure and debug
connect session privileges.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-26

Copyright © 2006, Oracle. All rights reserved.

Database Reporting

SQL Developer provides a number of predefined
reports about the database and its objects.

Database Reporting
SQL Developer provides many reports about the database and its objects. These reports can
be grouped into the following categories:

• About Your Database reports
• Database Administration reports
• Table reports
• PL/SQL reports
• Security reports
• XML reports
• Jobs reports
• Streams reports
• All Objects reports
• Data Dictionary reports
• User Defined reports

To display reports, click the Reports tab on the left side of the window. Individual reports
are displayed in tabbed panes on the right side of the window; and for each report, you can
select (using a drop-down list) the database connection for which to display the report. For
reports about objects, the objects shown are only those visible to the database user
associated with the selected database connection, and the rows are usually ordered by
Owner.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-27

Copyright © 2006, Oracle. All rights reserved.

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

Creating a User-Defined Report
User-defined reports are any reports that are created by SQL Developer users. To create a
user-defined report, perform the following steps:

1. Right-click the User Defined Reports node under Reports, and select Add Report.
2. In the Create Report Dialog box, specify the report name and the SQL query to retrieve

information for the report. Then click Apply.
In the example in the slide, the report name is specified as emp_sal. An optional
description is provided indicating that the report contains details about employees with
salary equal to or greater than 10,000. The complete SQL statement for retrieving the
information to be displayed in the user-defined report is specified in the SQL box. You can
also include an optional tool tip to be displayed when the cursor stays briefly over the report
name in the Reports Navigator display.
You can organize user-defined reports in folders, and you can create a hierarchy of folders
and subfolders. To create a folder for user-defined reports, right-click the User Defined node
or any folder name under that node and select Add Folder.
Information about user-defined reports, including any folders for these reports, is stored in a
file named UserReports.xml under the directory for user-specific information.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units F-28

Copyright © 2006, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL
Developer to do the following:
• Browse, create, and edit database objects
• Execute SQL statements and scripts in the SQL

Worksheet
• Edit and debug PL/SQL statements
• Create and save custom reports

Summary
SQL Developer is a free graphical tool to simplify database development tasks. Using SQL
Developer, you can browse, create, and edit database objects. You can use the SQL
Worksheet to run SQL statements and scripts. Using SQL Developer, you can edit and
debug PL/SQL. SQL Developer enables you to create and save your own special set of
reports for repeated use. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Index

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units Index-2

A

Actual parameters 1-7

Application triggers I-14, 10-3

autonomous transactions 7-10, 7-11, 7-12

B

BEFORE statement trigger 10-8, 10-9, 10-11, 10-18, 11-10

BFILE 5-17, 5-19, 9-3, 9-9, 9-10, 9-11, 9-12, 9-13, 9-14, 9-15, 9-16, 9-17, 9-20, 9-21, 9-22, 9-23

BFILENAME function 9-13, 9-15

bind variables 1-11, 2-4, 6-3, 6-4, 6-5, 6-8, 6-12, 6-14, 6-16

binding 1-12, 4-18, 6-3, 6-16

Bulk binding 7-14, 7-15, 7-16

BULK_EXCEPTIONS 7-15, 7-16

C

CALL 10-5, 10-10, 11-7, C-8

Creating a Database Connection F-7

Creating a User Defined Report F-27

CREATE ANY DIRECTORY privilege. 09-14

Create DIRECTORY objects 9-12

CREATE PROCEDURE statement I-11, 1-4, 1-5

D

DBMS_LOB 5-6, 9-8, 9-13, 9-16, 9-17, 9-23, 9-24, 9-25, 9-26, 9-28, 9-29, 9-30, 9-31, 9-32

DBMS_LOB package 5-6, 9-8, 9-9, 9-15, 9-20, 9-21, 9-22

DBMS_METADATA 6-18, 6-20

DBMS_OUTPUT package 5-3, 5-4, 5-5, 5-14, 10-28, I-11, I-17, I-18

DBMS_SQL 6-4, 6-5, 6-14, 6-15, 6-16, 6-17, 6-32, 7-9

DBMS_WARNING 12-10, 12-13, 12-14, 12-15, 12-16, 12-17, 12-18

Debugging PL/SQL F-25

DEPTREE 8-9, 8-10, 8-32

DIRECTORY 5-6, 5-9, 5-10, 5-17, 9-11, 9-12, 9-13, 9-14, 9-15, 9-17

DROP PROCEDURE 1-24, 1-28

Dynamic SQL 6-3, 6-4, 6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-13, 6-14, 6-17, 7-9, 12-16

E

Editing the PL/SQL Code F-21

EMPTY_BLOB 9-24, 9-25

EMPTY_CLOB 9-24, 9-25

exception I-10, 1-20, 1-21, 1-22, 1-23, 3-3, 4-20, 5-8, 5-11, 7-3, 7-4, 7-5, 7-22, 10-14, 10-18, 10-19, D-2, D-8, D-20,
D-27, D-28, D-29, D-30, D-31, D-32

EXECUTE IMMEDIATE 6-4, 6-5, 6-6, 6-7, 6-8, 6-9, 6-12, 6-13, 12-16

Execution Plan F-15

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units Index-3

F

fetch 4-15, 6-3, 6-5, 6-10, 6-20, 7-14, 7-19, D-18, D-20, D-21, D-24

FETCH_DDL 6-21

FILE_TYPE 5-9, 5-10

Formal parameters 1-07, 1-08, 1-14, 1-16, 4-03

forward declaration 3-10, 4-08, 4-09

Function I-9, I-12, I-13, 1-25, 2-3, 2-4, 2-5, 2-7, 2-10, 2-11, 2-14, 3-3, 3-10, 3-11, 4-4, 4-7, 4-11, 4-12, 4-14, 7-7, 7-24, 9-5, 9-
13, 9-15

H

host variables 1-11, 1-12

I

IDEPTREE 8-9, 8-10, 8-32

INSTEAD OF trigger 10-3, 10-07, 10-20, 10-21, 10-22

Internal LOBs 9-3, 9-7, 9-8, 9-31

interpreted 12-3, 12-6, 12-7, 12-8, 12-9

invoke a procedure 1-5, 1-9, 1-19

IS_OPEN 5-7, 5-9

L

LOB 6-21, 9-3, 9-4, 9-5, 9-6, 9-7, 9-18, 9-19, 9-20, 9-24, 9-25, 9-26, 9-30, 9-31, 9-32, D-3

LOB locator 9-6, 9-8, 9-10, 9-13, 9-15, 9-16, 9-19, 9-24, 9-25, 9-26, 9-32

LOB value 9-5, 9-6, 9-7, 9-20, 9-21, 9-22, 9-25, 9-26, 9-30

local dependencies 8-5, 8-6, 8-7, 8-11

M

Mutating Table 11-8, 11-9, 11-10, 11-18

O

OCI 9-8, 9-9, 9-11, 9-15, 9-18, 9-25

OLD and NEW qualifier 10-15, 10-16

OPEN-FOR 6-5, 6-6, 6-10, 6-11

overload 4-4

overloading 3-17, 4-3, 4-5, 4-6, 4-7, 4-22 O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units Index-4

P

package body I-13, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, 3-11, 3-12, 3-13, 3-14, 3-15, 3-16, 4-9, 4-10, 4-21, 6-13, 8-3,
8-25, 8-29, 8-30

package initialization block 4-10

package specification, I-13, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, 3-12, 3-13, 3-14, 3-15, 3-16, 4-9, 4-11, 4-12, 4-13, 4-21, 6-13,
7-3, 7-6, 8-3, 8-25, 8-29, 8-30

package state 4-11, 4-13, 4-14

PARAM_VALUE 12-8

parameter mode 1-8, 1-18, 2-4, 6-6

Parsing 1-26, 6-3

PL/SQL block I-9, I-10, I-11, I-12, I-14, I-15, 1-3, 1-4, 1-12, 2-3, 2-4, 5-4, 5-21, 5-24, 5-25, 6-6, 6-12, 6-14, 7-11, 7-12, 7-14,
10-03, 10-10, 11-04, D-3, D-12, D-22

PL/SQL Compiler 4-21, 7-12, 7-21, 7-23, 8-25, 12-6, 12-10, 12-11

PL/SQL wrapper 4-18, 4-20, 4-21

PLSQL_COMPILER_FLAGS 12-6, 12-7, 12-8, 12-9

PLSQL_NATIVE_LIBRARY_DIR 12-5, 12-6

PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT 12-5, 12-6

PLSQL_WARNINGS 12-10, 12-11, 12-12, 12-13

procedure I-9, I-11, 1-3, 1-4, 1-5, 1-19, 1-24, 1-25, 1-26, 2-11, 2-16

purity level 4-11, 4-12

R

READ privilege 9-12, 9-13, 9-14

remote dependencies 8-13, 8-14, 8-15, 8-17, 8-18

REPLACE option 1-4, 2-4, 3-7, 3-9

RETURN data type I-12, 2-4, 2-11

RETURN statement I-12, 2-3, 2-4, 2-5, 2-6, 2-16

row trigger 10-5, 10-6, 10-8, 10-9, 10-14, 10-15, 10-17, 10-18, 10-20, 10-28, 11-8

S

security mechanism 9-10

SESSION_MAX_OPEN_FILES 9-14

shared libraries 12-4, 12-5, 12-6, 12-8

signature 8-15, 8-16, 8-24

Snippets F-17

statement trigger 10-5, 10-6, 10-8, 10-9, 10-11, 10-18, 11-8, 11-10

SQL Developer F-3

SQL Worksheet F-15

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: Develop PL/SQL Program Units Index-5

T

Temporary LOBs 9-31, 9-32

time stamp 8-15, 8-17, 8-18, 8-19, 8-20, 8-21, 8-22, 8-23, 8-24

TO_BLOB() 9-19

TO_CLOB() 9-19

trigger action 10-6, 10-17, 10-18

trigger timing 10-7

trigger type 10-6

triggering event 10-5, 10-6, 10-10, 10-13, 10-18, 11-3, 11-14

U

User-defined PL/SQL function 2-11

USER_DEPENDENCIES 8-8

USER_ERRORS 11-14

USER_PLSQL_OBJECTS 12-8

user_stored_settings 12-8

USER_TRIGGERS 11-14, 11-15, 11-16

UTL_FILE 5-4, 5-6, 5-7, 5-8, 5-9, 5-10, 5-20

UTL_FILE exceptions 5-8

UTL_FILE package 5-4, 5-6, 5-7, 5-8, 5-10

utl_file_dir 5-6, 5-9

UTL_MAIL 5-4, 5-15, 5-16, 5-17, 5-19, C-19

W

wrap 1-25, 4-19, 4-21, 4-23

wrapping a package 4-21

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

	Cover Page
	Table of Contents
	Preface
	Lesson 10: Creating Triggers
	Objectives
	Types of Triggers
	Guidelines for Designing Triggers
	Creating DML Triggers
	Types of DML Triggers
	Trigger Timing
	Trigger-Firing Sequence
	Trigger Event Types and Body
	Creating a DML Statement Trigger
	Testing SECURE_EMP
	Using Conditional Predicates
	Creating a DML Row Trigger
	Using OLD and NEW Qualifiers
	Using OLD and NEW Qualifiers:Example Using AUDIT_EMP
	Restricting a Row Trigger: Example
	Summary of the Trigger Execution Model
	Implementing an Integrity Constraintwith a Trigger
	INSTEAD OF Triggers
	Creating an INSTEAD OF Trigger
	Comparison of Database Triggers andStored Procedures
	Comparison of Database Triggersand Oracle Forms Triggers
	Managing Triggers
	Removing Triggers
	Testing Triggers
	Summary
	Practice 10: Overview
	Practice 10

	Lesson 11: Applications for Triggers
	Objectives
	Creating Database Triggers
	Creating Triggers on DDL Statements
	Creating Triggers on System Events
	LOGON and LOGOFF Triggers: Example
	CALL Statements
	Reading Data from a Mutating Table
	Mutating Table: Example
	Benefits of Database Triggers
	Managing Triggers
	Business Application Scenarios forImplementing Triggers
	Viewing Trigger Information
	Using USER_TRIGGERS
	Listing the Code of Triggers
	Summary
	Practice 11: Overview
	Practice 11

	Lesson 12: Understanding and Influencingthe PL/SQL Compiler
	Objectives
	Native and Interpreted Compilation
	Features and Benefitsof Native Compilation
	Considerations When UsingNative Compilation
	Parameters Influencing Compilation
	Switching Between Nativeand Interpreted Compilation
	Viewing Compilation Informationin the Data Dictionary
	Using Native Compilation
	Compiler Warning Infrastructure
	Setting Compiler Warning Levels
	Guidelines for Using PLSQL_WARNINGS
	DBMS_WARNING Package
	Using DBMS_WARNING Procedures
	Using DBMS_WARNING Functions
	Using DBMS_WARNING: Example
	Summary
	Practice 12: Overview
	Practice 12

	Appendix A: Practice Solutions
	Practice 12: Solutions
	Practice 11: Solutions
	Practice 10: Solutions
	Practice 9: Solutions
	Practice 8: Solutions
	Practice 7: Solutions
	Practice 6: Solutions
	Practice 5: Solutions
	Practice 4: Solutions
	Practice 3: Solutions
	Practice 2: Solutions
	Practice 1: Solutions
	Practice I: Solutions

	Appendix B: Table Descriptions and Data
	Entity Relationship Diagram
	Tables in the Schema
	REGIONS Table
	COUNTRIES Table
	LOCATIONS Table
	DEPARTMENTS Table
	JOBS Table
	EMPLOYEES Table
	JOB_HISTORY Table

	Appendix C: Studies for Implementing Triggers
	Objectives
	Controlling Security Within the Server
	Controlling Securitywith a Database Trigger
	Using the Server Facilityto Audit Data Operations
	Auditing by Using a Trigger
	Auditing Triggers by UsingPackage Constructs
	AUDIT_PKG Package
	AUDIT_TABLE Table andAUDIT_EMP Procedure
	Enforcing Data Integrity Within the Server
	Protecting Data Integrity with a Trigger
	Enforcing Referential IntegrityWithin the Server
	Protecting Referential Integritywith a Trigger
	Replicating a Table Within the Server
	Replicating a Table with a Trigger
	Computing Derived Data Within the Server
	Computing Derived Values with a Trigger
	Logging Events with a Trigger
	Summary

	Appendix D: Review of PL/SQL
	Block Structure for AnonymousPL/SQL Blocks
	Declaring PL/SQL Variables
	Declaring Variables with the%TYPE Attribute
	Creating a PL/SQL Record
	%ROWTYPE Attribute
	Creating a PL/SQL Table
	SELECT Statements in PL/SQL
	Inserting Data
	Updating Data
	Deleting Data
	COMMIT and ROLLBACK Statements
	SQL Cursor Attributes
	IF, THEN, and ELSIF Statements
	Basic Loop
	FOR Loop
	WHILE Loop
	Controlling Explicit Cursors
	Declaring the Cursor
	Opening the Cursor
	Fetching Data from the Cursor
	Closing the Cursor
	Explicit Cursor Attributes
	Cursor FOR Loops
	FOR UPDATE Clause
	WHERE CURRENT OF Clause
	Trapping PredefinedOracle Server Errors
	Trapping PredefinedOracle Server Errors: Example
	Non-Predefined Error
	User-Defined Exceptions
	RAISE_APPLICATION_ERROR Procedure

	Appendix E: Developer
	JDeveloper
	Connection Navigator
	Application Navigator
	Structure Window
	Editor Window
	Deploying Java Stored Procedures
	Publishing Java to PL/SQL
	Creating Program Units
	Compiling
	Running a Program Unit
	Dropping a Program Unit
	Debugging PL/SQL Programs
	Setting Breakpoints
	Stepping Through Code
	Examining and Modifying Variables

	Appendix F: Using SQL Developer
	Objectives
	What Is Oracle SQL Developer?
	Key Features
	Installing SQL Developer
	Menus for SQL Developer
	Creating a Database Connection
	Browsing Database Objects
	Creating a Schema Object
	Creating a New Table: Example
	Using the SQL Worksheet
	Executing SQL Statements
	Viewing the Execution Plan
	Formatting the SQL Code
	Using Snippets
	Using Snippets: Example
	Using SQL*Plus
	Creating an Anonymous Block
	Editing the PL/SQL Code
	Creating a PL/SQL Procedure
	Compiling a PL/SQL Procedure
	Running a PL/SQL Procedure
	Debugging PL/SQL
	Database Reporting
	Creating a User-Defined Report
	Summary

	Index

