
 
Software Development 

 

JP 31/05/2005 
 

 

BSc Applied Computing 

 
 

4. Working with Databases 
using JDBC 

 
 

Contents 
 
INTRODUCTION....................................................................................................................................................... 2 

CREATING A DATABASE CONNECTION .......................................................................................................... 3 

JDBC DRIVER TYPES.............................................................................................................................................. 5 

JDBC URLS ................................................................................................................................................................ 7 

EXECUTING DATABASE QUERIES..................................................................................................................... 8 

INSERTING AND UPDATING DATA.................................................................................................................. 10 

HANDLING DATES ................................................................................................................................................ 11 

CREATING OBJECTS USING DATABASE DATA ........................................................................................... 11 

INSERTING OBJECTS INTO THE DATABASE................................................................................................ 14 

PREPARED STATEMENTS................................................................................................................................... 15 

TRANSACTIONS..................................................................................................................................................... 16 

STORED PROCEDURES........................................................................................................................................ 17 

APPENDIX A: SETTING UP A WINDOWS DSN ............................................................................................... 20 

APPENDIX B: CONNECTING TO AN HSQLDB DATABASE......................................................................... 21 

APPENDIX C: CONNECTING TO AN ORACLE DATABASE........................................................................ 25 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 2 

 Introduction 
 

The JDBC API provides Java applications with access to most database systems, using 
Structured Query Language (SQL). It is usually assumed that JDBC stands for Java DataBase 
Connectivity, although Sun claim officially that it doesn’t! 

Different database systems don’t actually have much in common - basically just a similar purpose 
and a compatible query language. Every database has its own API to allow you to write programs 
that interact with the database. This means that writing code capable of interfacing with 
databases from more than one vendor is difficult. Cross-database APIs exist, most notably 
Microsoft's ODBC. ODBC is, however, limited to the Windows platform. 

JDBC is Sun's attempt to create a cross-platform interface between databases and Java. With 
JDBC, you can count on a standard set of database access features and a particular subset of 
SQL. JDBC defines a set of interfaces that allow the Java programmer to access database 
functionality, including running queries and processing results. A database vendor or third-party 
developer writes a JDBC driver, which is a set of classes that implements these interfaces for a 
particular database system. To change the database used in a program, you simply need to 
change the driver which you use – the rest of the code stays the same. 

The figure shows how an application uses JDBC to interact with one or more databases without 
knowing about the underlying driver implementations. 

 

Note that Java classes which use the JDBC API classes must import them from the java.sql 
package, for example 

import java.sql.*; 

PreparedStatement 

ResultSet 

Statement 

ResultSet 

CallableStatement 

ResultSet 

DriverManager 

JDBC-ODBC 
Bridge 

MySQL Driver Oracle Driver 

ODBC Driver 

Oracle 
database 

ODBC 
database

MySQL 
database 

Connection 
JDBC API classes 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 3 

Creating a database connection 

 
The following code shows a method which connects to a database and returns a Connection 
object. Connection is the JDBC API class which represents a database connection. The 
Connection returned by this method can then be used elsewhere in the program 
 
/** 
 * connection to database 
 * @return a Connection 
 */ 
public Connection dbConnect() 
{ 
    Connection con = null; 
    try{ 
        //Make sure the JdbcOdbcSriver class is loaded 
        Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 
 
        //Try to connect to database 
        con = DriverManager.getConnection("jdbc:odbc:Northwind"); 
    } 
    catch (SQLException exc) 
    { 
        System.out.println("Error making JDBC connection: " +   
   exc.toString()); 
    } 
     catch (ClassNotFoundException exc) 
    { 
        System.out.println("Error loading driver class: " +   
   exc.toString()); 
    } 
    return con; 
} 
 
The key steps here are: 
 
1. Loading the driver 
 
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 
 
This line loads the driver class and registers it with the JDBC DriverManager. This example loads 
a driver class called the JDBC-ODBC bridge driver. 
 
2. Creating the connection 
 
con = DriverManager.getConnection("jdbc:odbc:Northwind"); 
 
This line creates a connection object using a specific database name. In this case the database is 
a Windows ODBC database identified by the Windows Data Source Name (DSN) “Northwind”. 
The examples in these notes use the Microsoft Access Northwind sample database, and assume 
that a DSN has been set up on your system for this database. See Appendix A for details on how 
to set this up. 
 
Note that the checked exception SQLException must be handled when using JDBC API methods. 
The above example also handles ClassNotFoundException, so that any problems with loading 
the driver can be identified. 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 4 

Closing the connection 
 
Open connections should be closed before a program terminates. The following method closes a 
connection. It takes a Connection object as its parameter: 
 
/** 
 * close a database connection 
 * @param con the database connection 
 */ 
public void closeConnection(Connection con) 
{ 
     try { 
        if (!con.isClosed()) 
        { 
            con.close(); 
        } 
      } 
    catch (SQLException exc) 
    { 
        System.out.println("Error closing JDBC connection: " +    
  exc.toString()); 
    } 
} 
 
 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 5 

JDBC Driver types 
 

There are JDBC drivers for most databases. There are FOUR categories of drivers: 

Type 1 JDBC-ODBC bridge drivers 

Type 1 drivers use a bridge technology to connect a Java client to an ODBC database system, 
usually on a Windows platform. The Sun JDBC-ODBC Bridge is the only existing example of a 
Type 1 driver. Type 1 drivers require non-Java software to be installed on the machine running 
your code, and they are implemented using native code (i.e. code which is specific to the 
operating system running the database – not Java code).  

Type 2 Native-API partly Java drivers 
Type 2 JDBC drivers talk directly to the API of the DBMS, rather than any mapping layer such as 
ODBC, and can be accessed from Java. 
 
This implies that the driver either does not provide the complete JDBC API (but provides enough 
to drive the native database API) or is not written completely in Java (thus losing out in cross-
platform functionality). 
 
Technically, this type of driver is the most efficient user of machine resources, but this advantage 
is far outweighed by the need to write a different JDBC driver for each DBMS and for each 
platform. 

 

 

Java Application 

JDBC API 

JDBC 
DriverManager 

JDBC-ODBC 
Bridge Driver 

ODBC 

DB Client library 

Database 
Server 

Type 1 

Java Application 

JDBC API 

JDBC 
DriverManager 

Partial Java  
JDBC Driver 

DB Client library 

Database 
Server 

Type 2 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 6 

Type 3 Net-protocol All-Java drivers 
These drivers use a networking protocol and middleware to communicate with a server. The 
server then translates the protocol to DBMS specific function calls. Type 3 JDBC drivers are the 
most flexible JDBC solution They do not require any native binary code on the client. A Type 3 
driver does not need any client installation. These drivers are especially useful for applet 
deployment, since the actual JDBC classes can be written entirely in Java and downloaded by 
the client on the fly. 
 

Type 4 Native-protocol All-Java drivers 
Type 4 drivers are written entirely in Java. They understand database-specific networking 
protocols and can access the database directly without any additional software. This means that 
there is no client installation or configuration. However, a Type 4 driver may not be suitable for 
some applications if the underlying protocol doesn't handle issues such as security and network 
connectivity well.  
 

 

 

Java Application 

JDBC API 

JDBC 
DriverManager 

Pure Java 
JDBC Driver 

DB Middleware 

Database 
Server 

Type 3 

Java Application 

JDBC API 

JDBC 
DriverManager 

Pure Java  
JDBC Driver 

Database 
Server 

Type 4 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 7 

JDBC URLs 
 

A JDBC driver uses a JDBC URL to identify and connect to a specific database. JDBC URLs are 
of the form: 
 
jdbc:driver:databasename 

 
In the above example the JDBC-ODBC Bridge driver was used to connect to an ODBC database 
with the DSN “Northwind”. No username or password needed to be specified for this Access 
database: 
 
con = DriverManager.getConnection("jdbc:odbc:Northwind"); 
 
The following example would be used to connect to an Oracle 9i database called “oracle9a” on a 
computer named “MyServer”, and supplies a username (Scott) and password (Tiger): 
 
Class.forName("oracle.jdbc.OracleDriver"); 
 
con = DriverManager.getConnection 
 ("jdbc:oracle:thin:@MyServer:1521:oracle9a","scott", "tiger"); 
 
This example uses the Oracle Thin JDBC driver, which is a Type 4 driver. See Appendix B for 
more information on connecting to Oracle. 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 8 

Executing database queries 
 

Once you have created a Connection you can use it to execute SQL statements. There are 
actually three kinds of statement classes in JDBC: 

Statement 
Represents a basic SQL statement 

PreparedStatement 
Represents a precompiled SQL statement, which can offer improved performance 

CallableStatement 
Allows JDBC programs complete access to stored procedures within the database. 
 
 
The simplest to use is the Statement class. A Statement object is created by the createStatement 
method of a Connection.  
 
The Statement can then be used to execute queries using its executeQuery method. This method 
returns a ResultSet object which contains the results of the query. 
 
The following example shows a method which creates a Statement, executes a query and 
displays the results on the console. It takes a Connection as a parameter – this assumes that the 
dbConnect method listed above has been run to create the connection to the Northwind 
database. 
 
/** 
 * performs a query and displays recordSet 
 */ 
public void queryToRecordSet(Connection con) 
{ 
    Statement stmt = null; 
    try{ 
        stmt = con.createStatement(); 
        ResultSet rs = stmt.executeQuery("SELECT * from SHIPPERS"); 
 
        // display the results 
        System.out.println("Results of query to recordset"); 
        while(rs.next()) 
        { 
          System.out.println(rs.getInt(1) + ", " + rs.getString(2) + ", 
   " + rs.getString(3)); 
        } 
    } 
    catch (SQLException exc) 
    { 
        System.out.println("Error performing query: " + exc.toString()); 
    } 
} 
 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 9 

 
ResultSet methods include: 
 

• first() 
• last() 
• next() 
• previous() 
• getString(String columnname) or getString(int columnNumber) 
• getInt(String columnname) or getInt(int columnNumber) 
• getObject(String columnname) or getObject(int columnNumber) 
 

 

Putting it together 
 

The following example shows a main method which calls the methods listed above to connect to 
the Northwind database and display the results of a query. The database methods are in a class 
called JdbcDemo. 
 
public static void main(String[] args) { 
    JdbcDemo jdbcDemo1 = new JdbcDemo(); 
 
    // open connection 
    Connection conn = jdbcDemo1.dbConnect(); 
 
    // simple query 
    jdbcDemo1.queryToRecordSet(conn); 
 
    // close connection 
    jdbcDemo1.closeConnection(conn); 
  } 
 
The output from this code looks like this: 
 
Results of query to recordset 
1, Speedy Express, (503) 555-9831 
2, United Package, (503) 555-3199 
3, Federal Shipping, (503) 555-9931 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 10 

Inserting and updating data 
 

Not all SQL statements return results. INSERT, UPDATE and DELETE statements simply alter 
the contents of the database. The Statement class has an executeUpdate method which does not 
return a ResultSet. In fact it returns an integer which indicates the number of rows in the 
database which were altered. 
 
The following method demonstrates inserting and updating data. Again, a Connection object is 
required as a parameter.  Note that this method does not display any results – the 
queryToRecordSet method could be used to display the contents of the table after updating. 
 
/** 
 * updates and inserts data 
 * @param con a database connection 
 */ 
public void insertAndUpdateRecord(Connection con) 
{ 
    Statement stmt = null; 
    try{ 
        stmt = con.createStatement(); 
 
        String updateQuery = "UPDATE SHIPPERS SET CompanyName = 'Speedy 
  Inc' WHERE ShipperID = 1"; 
        stmt.executeUpdate(updateQuery); 
 
        String insertQuery = "INSERT INTO SHIPPERS (CompanyName, Phone) 
  VALUES ('Bell International', '(01698) 283100)')"; 
        stmt.executeUpdate(insertQuery); 
    } 
    catch (SQLException exc) 
    { 
        System.out.println("Error performing query: " + exc.toString()); 
    } 
} 
 
Note that the INSERT statement used here does not include a value for the first field in the table, 
ShipperID, as this is an autonumber field in the Access database. 
 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 11 

Handling dates 
 

JDBC defines three classes devoted to storing date and time information: java.sql.Date, 
java.sql.Time, and java.sql.Timestamp. These correspond to the SQL DATE, TIME, and 
TIMESTAMP types. The usual java.util.Date class is not suitable for any of them. 
 
The SQL DATE type contains only a date, so the java.sql.Date class contains only a day, month, 
and year. SQL TIME (java.sql.Time) includes only a time of day, without date information. SQL 
TIMESTAMP (java.sql.Timestamp) includes both. 
 
Different DBMS packages have different methods of encoding date and time information. JDBC 
supports the ISO date escape sequences, and individual drivers must translate these sequences 
into whatever form the underlying DBMS requires. The syntax is: 
 
{d 'yyyy-mm-dd'} 
{t 'hh:mm:ss'} 
{ts 'yyyy-mm-dd hh:mm:ss.ms.microseconds.ns'} 

 
Here is an example that uses a date escape sequence: 
 
stmt.executeUpdate("INSERT INTO FRIENDS(BIRTHDAY) VALUES ({d '1978-12-
14'})") 

Creating Objects using database data 
 
So far all we have done with our data is to display it on the console. In object-oriented programs it 
is often necessary to use the data to create objects which can be used elsewhere in the program.  
 
The next example shows how the contents of the Shippers table can be stored in an ArrayList 
data structure object. This example assumes that a Shipper class has been defined. A Shipper 
object has attributes which correspond to the fields in the database table, and can represent a 
single row in the table. We say that the Shipper class models the data.  
 
public class Shipper { 
    public int shipperId; 
    public String companyName; 
    public String phone; 
 
  // default constructor 
  public Shipper(){ 
      shipperId = 0; 
      companyName = "None"; 
      phone = "None"; 
  } 
 
  // constructor which sets all attribute values 
  public Shipper(int id, String name, String ph){ 
      shipperId = id; 
      companyName = name; 
      phone = ph; 
  } 
} 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 12 

The method which performs the query is as follows. As usual, a Connection object is required as 
a parameter. 
 
 
/** 
 * queries database and stores the results as objects for use elsewhere     
 * in an application 
 * @param con the database connection 
 * @return a List of Shipper objects 
 */ 
public List queryToObjects(Connection con) 
{ 
    List shippers = new ArrayList(); 
    Shipper ship = null; 
    Statement stmt = null; 
 
    try{ 
        stmt = con.createStatement(); 
        ResultSet rs = stmt.executeQuery("SELECT * from SHIPPERS"); 
 
        /* add each database row to List of shippers*/ 
        while (rs.next()) 
        { 
            // construct new Shipper object from RecordSet row 
  ship = new Shipper(rs.getInt(1),rs.getString(2), 
   rs.getString(3)); 
            shippers.add(ship); 
        } 
        System.out.println("Data stored as a List of Shipper objects"); 
    } 
    catch (SQLException exc) 
    { 
        System.out.println("Error performing query: " + exc.toString()); 
    } 
 
    return shippers; 
} 
 
 
Note that this method returns an ArrayList object (actually the reference type here is List, but the 
runtime type will be ArrayList) which contains the data in the form of Shipper objects. It does not 
display any results. The objects in the ArrayList can be passed to any other class or method in 
the program for display or processing. 
 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 13 

The following method demonstrates the use of an Iterator to display the contents of the ArrayList. 
This method takes the ArrayList as a parameter. 
 
 
/** 
 * displays the contents of a list of Shipper objects 
 * @param shippers 
 */ 
public void displayShippers(List shippers) 
{ 
        Shipper ship = null; 
 
        System.out.println("Contents of list of Shippers"); 
        for (Iterator itr = shippers.iterator() ; itr.hasNext() ;) { 
          ship = (Shipper) itr.next(); 
          System.out.println(ship.shipperId + ", "+  ship.companyName + 
   ", "+  ship.phone); 
        } 
} 
 
This method does not access the database – it simply displays previously created objects. 
 
The following code in the main method will call the above methods to query the database and 
display the results. Although these are shown together as a demonstration, in a real application 
method calls like these could be in completely different parts of the program, with the database 
data passed using a single object.  
 
List shipperList = jdbcDemo1.queryToObjectsDemo(conn); 
jdbcDemo1.displayShippers(shipperList); 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 14 

Inserting Objects into the database 
 
It is often necessary in object-oriented programs to store objects created in the program in a 
database table. The following example method takes a Shipper object as a parameter, and uses 
its attributes to inserts a new row into the Shippers table. The first part of the SQL query is 
created as a StringBuffer, and the Shipper values are appended to create a complete query 
string. 
 
/** 
 * insert a Shipper object as a new row in the Shippers table 
 * @param con the database connection 
 * @param ship a Shipper object 
 */ 
public void insertNewObject(Connection con, Shipper ship) 
{ 
      Statement stmt = null; 
      try{ 
          stmt = con.createStatement(); 
 
          // create query string 
          StringBuffer insertQuery = new StringBuffer("INSERT INTO  
   SHIPPERS (CompanyName, Phone) VALUES ('"); 
          insertQuery.append(ship.companyName); 
          insertQuery.append("', '"); 
          insertQuery.append(ship.phone); 
          insertQuery.append("')"); 
 
          stmt.executeUpdate(insertQuery.toString()); 
 
      } 
      catch (SQLException exc) 
      { 
          System.out.println("Error performing query: " +    
   exc.toString()); 
      } 
} 
 
This method could be called like this: 
 
Shipper ship = new Shipper(0, "Rapid Transit", "(01698)283100"); 
jdbcDemo1.insertNewObject(conn, ship);  
 
 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 15 

Prepared statements 
 
The PreparedStatement class is closely related to the Statement class. They can both be used to 
execute SQL statements. The difference is that PreparedStatement allows you to precompile 
your SQL and run it repeatedly. You can adjust specified parameters each time the SQL is run – 
for example you could repeatedly run an INSERT statement with different values to be inserted 
each time.  
 
The main advantage of using a PreparedStatement is that you can significantly improve 
performance by doing compilation once only, as SQL string processing is a large part of the 
work done by the database. 
 
The following method shows the use of a PreparedStatement to insert two database rows. In a 
real program, the PreparedStatement would probably be re-used many more times than this. 
 
/** 
 * performs a query using a prepared statement 
 * @param con the database connection 
 */ 
public void preparedStatementQuery(Connection con) 
{ 
    PreparedStatement pstmt = null; 
    try{ 
        String insertQuery = "INSERT INTO SHIPPERS (CompanyName, Phone) 
  VALUES (?,?)"; 
        pstmt = con.prepareStatement(insertQuery); 
 
        pstmt.setString(1, "DHM Couriers"); 
        pstmt.setString(2, "(503) 555-1139"); 
        pstmt.executeUpdate(); 
 
        pstmt.setString(1, "Mercury Inc."); 
        pstmt.setString(2, "(503) 555-1133"); 
        pstmt.executeUpdate(); 
 
    } 
    catch (SQLException exc) 
    { 
        System.out.println("Error performing query: " + exc.toString()); 
    } 
} 
 
The PreparedStatement is created using the prepareStatement method of the Connection object, 
which takes a query string as a parameter. The query string can contain ? symbols which indicate 
parameters to be supplied at runtime. 
 
Like a Statement, the PreparedStatement object has executeUpdate (and executeQuery) 
methods. It also has methods, such as setString used in the example, to set the values of 
parameters. For example, the line: 
 
pstmt.setString(1, "DHM Couriers"); 
 
causes the first ? in the query string to replaced with “DHM Couriers” when the statement is 
executed. 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 16 

Transactions 
 
A transaction is a group of several operations that behave atomically – i.e. as if they are a single 
operation. Executing a transaction involves the following steps: 
 

• Start the transaction 
• Perform its component operations 
• Commit if all operations succeeded OR Rollback if one operation failed 

 
Rolling back returns the database to the state before the start of the transaction, as if none of the 
operations had taken place. 
 
Transactions can be important in many database situations. For example, if a stock management 
system moves stock items from a STOCK table to a SHIPPING table, then using transactions can 
prevent the possibility of an item being deleted from STOCK and not being added successfully to 
SHIPPING.  
 
To start a transaction you call the setAutoCommit method of the Connection with a parameter 
value of “false”. This means that the transaction needs to be committed manually using the 
commit method of the Connection, e.g. 
 
con.setAutoCommit(false); 
 
A set of component operations are then executed, e.g. 
 
String updateQuery = "UPDATE SHIPPERS SET CompanyName = 'Package  
 Force' WHERE ShipperID = 1"; 
stmt.executeUpdate(updateQuery); 
 
String insertQuery = "INSERT INTO SHIPERS (CompanyName, Phone)   
 VALUES ('Bell International', '(01698) 283100)')";              
stmt.executeUpdate(insertQuery); 
 
Note that the second query string here has an error – it refers to the SHIPERS table rather than 
the SHIPPERS table. This will cause an SQLException to be thrown as the table will not be 
found. 
 
Finally, the transaction is committed: 
 
con.commit(); 
 
If an SQLException is thrown by any operation, the transaction is rolled back in the catch block: 
 
con.rollback(); 
 
 
The following method performs two actions on the Shippers table as a transaction. IF the code is 
run as shown, the incorrect table name in the second query will cause an SQLException, and the 
database will not be changed. If this error is corrected and the code run again, both queries will 
be executed and the database will be altered. 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 17 

 
/** 
 * performs a transaction 
 * @param con the database connection 
 */ 
public void transactionsDemo(Connection con) 
{ 
  Statement stmt = null; 
    try{ 
        con.setAutoCommit(false); 
        con.setTransactionIsolation(con.TRANSACTION_READ_COMMITTED); 
        stmt = con.createStatement(); 
 
        // perform a series of actions as a transaction 
        String updateQuery = "UPDATE SHIPPERS SET CompanyName = 'Package 
  Force' WHERE ShipperID = 1"; 
        stmt.executeUpdate(updateQuery); 
 
        String insertQuery = "INSERT INTO SHIPERS (CompanyName, Phone)  
  VALUES ('Bell International', '(01698) 283100)')";           
   stmt.executeUpdate(insertQuery); 
 
        // commit transaction 
        con.commit(); 
        con.setAutoCommit(true);  //Access gives Invalid Transaction  
         //State error on closing without this 
    } 
    catch (SQLException exc) 
    { 
        System.out.println("Error performing query, rolling back: "); 
        System.out.println(exc.getMessage()); 
        try{  
  con.rollback(); 
  con.setAutoCommit(true); 
   }  
   catch (SQLException trexc)  
   { 
  System.out.println("Error rolling back transaction: "  
   + trexc.toString()); 
    } 
      } 
} 
 
Note that when using Access it was necessary to set AutoCommit back to “true” after either 
committing or rolling back, otherwise Access gave an error on closing the connection. Note also 
that rollback throws SQLException, and in the example this is handled inside the main catch 
block. 
 

Stored Procedures 
 
Most DBMS systems include some sort of internal programming language (e.g., Oracle's 
PL/SQL). These languages allow database developers to embed application code directly within 
the database and then call that code from other applications. The advantage of this approach is 
that the code can be written just once and then used in multiple different applications. It also 
allows application code to be divorced from the underlying table structure. If stored procedures 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 18 

handle all of the SQL, and applications just call the procedures, only the stored procedures need 
to be modified if the table structure is changed later on. 
 
JDBC allows you to call a database stored procedure from a Java application. The first step is to 
create a CallableStatement object, in a similar way to creating Statement and PreparedStatement 
objects. A CallableStatement object contains a call to a stored procedure; it does not contain the 
stored procedure itself. The first line of code below creates a call to the stored procedure 
SHOW_SHIPPERS using the Connection con. When the driver encounters "{call 
SHOW_SUPPLIERS}" , it will translate into the native SQL used by the database to call the 
stored procedure named SHOW_SUPPLIERS .  

  
CallableStatement cs = con.prepareCall("{call SHOW_SUPPLIERS}"); 
ResultSet rs = cs.executeQuery(); 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 19 

 

EXERCISE 
 
Part A 
In this of this exercise you can make use of the code given in these notes. 
 

1. Create a Netbeans project called jdbcexercise and add a new class JDBCExercise. This 
class should contain methods required to connect to the Northwind database and display 
the contents of the Shippers table. Create a main method to execute this operation. 

 
2. Modify your JDBCExercise class so that it updates one record in the Shippers table, and 

inserts a new record, and then displays the new contents of the table. When modifying for 
these exercises, you can simply add a new method and use comments to choose which 
methods are called when the main method is run, e.g. 

 
 public static void main(String[] args) { 

     JDBCExercise jdbcEx1 = new JDBCExercise(); 
 
     Connection conn = jdbcEx1.dbConnect(); 
 
     // simple query – commented out 
     // jdbcEx1.queryToRecordSet(conn); 
 
     // insert and update - called 
     jdbcEx1.insertAndUpdateRecord(conn); 
 
     jdbcEx1.closeConnection(conn); 

   } 
 

3. Modify your JDBCExercise class so that it queries the database and stores the contents 
of the Shippers table in an ArrayList of Shipper objects, and uses a separate method to 
display the contents of the ArrayList. 

 
4. Modify your JDBCExercise class so that it creates a new Shipper object and uses it to 

insert a new database row.  
 

5. Modify your JDBCExercise class so that it uses a prepared statement to insert two new 
rows in the Shippers table. 

 
6. Modify your JDBCExercise class so that it uses a transaction to execute two queries. 

Check that the transaction rolls back if there is an error, and commits otherwise. 
 
Part B 
Add a new class JDBCExerciseB to your project. Create and test methods which do the following: 

 
1. Display the CompanyName, ContactName and City from the Customers table using a 

RecordSet. 
 

2. Display the contents of the OrderDetails table which belong to Order ID 10248. You 
should create an OrderDetail class and store the data in a List of OrderDetail objects. 
You should then display the contents of the List. 

 
3. Create a new OrderDetail object to belong to Order ID 10248, and use it to add a row to 

the OrderDetails table 
 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 20 

Appendix A: Setting up a Windows DSN 
 

An Access database can be configured in Windows as an ODBC Data Source. Once an ODBC 
Data Source is configured, a Java application can connect to it using the JDBC-ODBC Bridge 
driver.  
 
Many other kinds of databases which run on Windows can also be configured in the same way, 
so Java can connect in the same way to just about any kind of Windows database, e.g. Microsoft 
SQL Server, Oracle, Interbase, etc.   
 
Note that ODBC may not be the best way to connect to a particular database. For example, 
although you can set up an Oracle database as an ODBC Data Source, it is usually better to use 
a specific Oracle driver. 
 
If the database has not been configured, then you will need to set up an ODBC Data Source 
Name. Open the 32-bit ODBC Control Panel in Windows 98 (it’s under Control>Panel 
Administrative Tools in Windows 2000/XP). Select the System DSN tab. This allows you define 
a Data Source Name which is available to all users.  
 
To set up the Access Northwind database, click Add and select the Microsoft Access Driver 
(*.mdb), and then click Finish.  
 
The ODBC Microsoft Access Setup window appears. Fill in the DSN ‘Northwind’ and the 
description ‘Northwind Database’. Click Select and select your ‘nwind.mdb’ or ‘northwind.mdb’ 
databse in the file dialog box which opens. (You will need to know where the file is located). Click 
OK. You will then see Northwind in the System DSN tab. Click OK here to finish. 
 

 
 

If your PC has its Control Panel disabled, you may be able to display the above dialog using the 
32-bit Administrator option in on of the Oracle menus under Start>Programs. 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 21 

Appendix B: Connecting to an HSQLDB Database  
 
HSQLDB is a SQL relational database engine written in Java. It has a JDBC driver and supports 
a offers a small, fast database engine which offers both in-memory and disk-based tables. It can 
be used in the examples in these notes as an alternative to Access. It is simple to set up – no 
DSN is required, and the database engine can be started and managed within NetBeans. It also 
supports some features which are commonly found in databases, but which Access lacks. 
 

HSQLDB Library 
 
In order to use HSQLDB in a NetBeans project, you need to add a suitable library to the project. 
You may find that the NetBeans installation you are using has the library included. Right-click on 
the Libraries node in your project and select Add Library…. If hsqldb appears in the Add Library 
dialogue then you can simply click the Add Library button.  
 

  
 
 
If not, you need to tell the project to use the file hsqldb.jar which you can download from you 
course web site. You can simply add this file to the project as a JAR. You can also use the 
Manage Libraries option. This opens the Library Manager and allows you to create a new 
library, called hsqldb, and add the JAR file to the new library. You can then add the new library to 
your project. 
 
The Libraries node in the project should now contain the hsqldb library. 
 

  
 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 22 

 

Using HSQLDB for the JDBC exercise 
 
The following notes will help you modify the examples in these notes to use an HSQLDB 
database instead of Access. The same modifications can be used for examples which you will 
come across later in your course. 
 
Before you connect to database, you need to start the database server and specify where the 
database files will be kept. You can do this by adding the following class to your project, and 
running the file: 
 
package jdbcdemo; 
 
import org.hsqldb.Server; 
import java.sql.*; 
import java.util.*; 
 
public class StartHsqlServer { 
     
    public static void main(String[] args){ 
        String  serverProps; 
        String  url; 
        String  user     = "sa"; 
        String  password = ""; 
        Server  server; 
         
        try{ 
            serverProps = "database.0=file:e:/hsqldatabases/northwind"; 
            url         = "jdbc:hsqldb:hsql://localhost"; 
            server      = new Server(); 
             
            server.putPropertiesFromString(serverProps); 
            server.setLogWriter(null); 
            server.setErrWriter(null); 
            server.start(); 
        } 
        catch (Exception e){ 
            System.out.println("Error starting server: " +    
   e.toString()); 
        } 
    }   
}  
 
The serverProps variable in this example specifies that the database files will be stored in a folder 
e:/hsqldatabases, and will start with the name northwind (northwind.log, northwind.script, 
northwind.properties). You can back up the database simply by taking a copy of these files. 
 
The code to connect to the database is as before, but the driver and URL showuld be changed to 
the following: 
 
Class.forName("org.hsqldb.jdbcDriver"); 
con = DriverManager.getConnection("jdbc:hsqldb:hsql://localhost"); 
 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 23 

Run the file StartHsqlServer to start the database server. You can now run JdbcExercise – this 
will connect to the database, but will not work correctly as you have not yet added any data to the 
database. 
 

Managing the HSQL database 
 
The HSQL database can be managed from the Runtime window in NetBeans. Open the 
databases node and open the Drivers folder. The HSQLDB driver may be there already – if not, 
right-click on the Drivers folder and select Add Driver…, and choose the same hsqldb.jar file as 
before. 
 

 
 
Now you need to connect to the database. Right-click on the HSQLDB driver and select Connect 
Using… . Use the Database URL jdbc:hsqldb:hsql://localhost and username sa. 
 

 
 
A new connection is added in the Runtime window: 
 

 
 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 24 

You need to add some data. Right-click on the connection in the Runtime window and select 
Execute Command…. Paste the contents of the file northwind.sql, which you can download from 
your course web site, into the Command box, and click the Execute button. 
 

 
 
Two tables should be added to the database. You can now view the data or execute any other 
SQL commands. 
 

 

Running JdbcExercise 
 
You can now return to the Project window and run the file JdbcExercise, which should connect to 
the database and return the correct results. 
 
Note that the insert code will need to be modified to set a value for ShipperID, as this is not an 
autonumber field in the HSQLDB database. To do items 2&3 in Part B of the exercise, you will 
need to add new tables and data to the HSQL database. 
 

Shutting down 
 
To shut down the database, enter the command SHUTDOWN in the Command box for this 
database connection. 



BSc Applied Computing                                                                                                                 Software Development: 4. JDBC 
 

 
 
 Page 25 

 

Appendix C: Connecting to an Oracle Database 
 
In order to connect to Oracle you will need a suitable JDBC driver for the versions of Oracle and 
Java which you are using. Drivers can usually be downloaded from Oracle’s web site. 
 
The driver is supplied in the form of a Zip file. The example code below was used to connect to 
an Oracle 9i database called oracle9a.  
 
The driver used was version 9.0.1.4 for JDK1.2 and 1.3. The driver file is called classes12.zip. 
This file was added as a required library in JBuilder using Project>Properties. 
 
The JDBC URL needs to specify the following: 
 
Driver:   jdbc.oracle.thin 
Server Name:  the name or IP address of the computer hosting the database –   
   myserver in this case 
Port:   usually 1521 if Oracle was installed with default values 
Database name (SID): oracle9a in this case 
Username:  using built-in account Scott for testing 
Password:  Tiger 
 
The dbConnect method code is: 
 
/** 
 * connection to database 
 * @return a Connection 
 */ 
public Connection dbConnect() 
{ 
    Connection con = null; 
    try{ 
        //Make sure the JdbcOdbcSriver class is loaded 
        Class.forName("oracle.jdbc.OracleDriver"); 
 
        //Try to connect to database 
        con =  
  DriverManager.getConnection("jdbc:oracle:thin: 
  @myServer:1521:oracle9a","scott", "tiger"); 
    } 
    catch (SQLException exc) 
    { 
        System.out.println("Error making JDBC connection: " +   
  exc.toString()); 
    } 
     catch (ClassNotFoundException exc) 
    { 
        System.out.println("Error loading driver class: " +   
  exc.toString()); 
    } 
    //Return true if successful 
    return con; 
} 


