
ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:1

PART
III

Create Programs
Using PL/SQL

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:2

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:3

CHAPTER
8

Introduction to PL/SQL

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

S
toring and retrieving information is just one part of any real-life
application. Even the simplest applications need to do some processing
that is difficult or impossible using SQL alone. Just think of how complex
the computations are when the government’s share of your earnings
needs to be computed every year! OK, maybe you want to think of

another example instead. In any case, SQL alone isn’t up to the task.

What Is PL/SQL?
You may ask why SQL doesn’t have features that allow you to do more sophisticated
computations on data. The reason is partly historical: SQL came into existence as a
database query language (Structured Query Language) and has evolved and been
optimized for doing exactly that: querying databases. Different providers of database
software have agreed to certain SQL standards, but they did not agree on how to give
users more sophisticated SQL-oriented programming capabilities. Thus, each database
software provider has come up with proprietary or semi-proprietary products. Oracle
calls its solution PL/SQL. You can think of this as standing for “Programming Language
for SQL.”

In this chapter you will be introduced to the basics of PL/SQL. You will learn the
difference between SQL, SQL*Plus®, and PL/SQL. You will also start writing simple
PL/SQL procedures, as well as functions using basic PL/SQL constructs like variables,
loops, and cursors. Then you will learn about the important art of handling errors in
a way the user can easily understand.

If you just started reading in this chapter and have not done any of the exercises
in the preceding chapters, you will need to create the sample tables built in prior
chapters before you can do the exercises in this chapter. To accomplish this, enter
the following SQL commands:

L 8-1 DROP TABLE plsql101_purchase;
DROP TABLE plsql101_product;
DROP TABLE plsql101_person;
DROP TABLE plsql101_old_item;
DROP TABLE plsql101_purchase_archive;

CREATE TABLE plsql101_person (
person_code VARCHAR2(3) PRIMARY KEY,
first_name VARCHAR2(15),
last_name VARCHAR2(20),
hire_date DATE
)

;

4 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:4

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CREATE INDEX plsql101_person_name_index
ON plsql101_person(last_name, first_name);

ALTER TABLE plsql101_person
ADD CONSTRAINT plsql101_person_unique UNIQUE (

first_name,
last_name,
hire_date
)

;

INSERT INTO plsql101_person VALUES
('CA', 'Charlene', 'Atlas', '01-FEB-05');

INSERT INTO plsql101_person VALUES
('GA', 'Gary', 'Anderson', '15-FEB-05');

INSERT INTO plsql101_person VALUES
('BB', 'Bobby', 'Barkenhagen', '28-FEB-05');

INSERT INTO plsql101_person VALUES
('LB', 'Laren', 'Baxter', '01-MAR-05');

INSERT INTO plsql101_person VALUES
('LN', 'Linda', 'Norton', '01-JUN-06');

CREATE TABLE plsql101_product (
product_name VARCHAR2(25) PRIMARY KEY,
product_price NUMBER(4,2),
quantity_on_hand NUMBER(5,0),
last_stock_date DATE
)

;

ALTER TABLE plsql101_product ADD CONSTRAINT positive_quantity CHECK(
quantity_on_hand IS NOT NULL
AND
quantity_on_hand >=0
)

;

INSERT INTO plsql101_product VALUES
('Small Widget', 99, 1, '15-JAN-06');

INSERT INTO plsql101_product VALUES
('Medium Wodget', 75, 1000, '15-JAN-05');

INSERT INTO plsql101_product VALUES
('Chrome Phoobar', 50, 100, '15-JAN-06');

INSERT INTO plsql101_product VALUES
('Round Chrome Snaphoo', 25, 10000, null);

Chapter 8: Introduction to PL/SQL 5

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:5

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

INSERT INTO plsql101_product VALUES
('Extra Huge Mega Phoobar +',9.95,1234,'15-JAN-07');

INSERT INTO plsql101_product VALUES ('Square Zinculator',
45, 1, TO_DATE('December 31, 2005, 11:30 P.M.',

'Month dd, YYYY, HH:MI P.M.')
)

;
INSERT INTO plsql101_product VALUES (

'Anodized Framifier', 49, 5, NULL);
INSERT INTO plsql101_product VALUES (

'Red Snaphoo', 1.95, 10, '31-DEC-04');
INSERT INTO plsql101_product VALUES (

'Blue Snaphoo', 1.95, 10, '30-DEC-04')
;

CREATE TABLE plsql101_purchase (
product_name VARCHAR2(25),
salesperson VARCHAR2(3),
purchase_date DATE,
quantity NUMBER(4,2)
)

;

ALTER TABLE plsql101_purchase
ADD PRIMARY KEY (product_name,

salesperson,
purchase_date
)

;

ALTER TABLE plsql101_purchase
ADD CONSTRAINT reasonable_date CHECK(

purchase_date IS NOT NULL
AND
TO_CHAR(purchase_date, 'YYYY-MM-DD') >= '2003-06-30'
)

;

ALTER TABLE plsql101_purchase
ADD CONSTRAINT plsql101_purchase_fk_product FOREIGN KEY

(product_name) REFERENCES plsql101_product;

ALTER TABLE plsql101_purchase
ADD CONSTRAINT plsql101_purchase_fk_person FOREIGN KEY

(salesperson) REFERENCES plsql101_person;

CREATE INDEX plsql101_purchase_product
ON plsql101_purchase(product_name);

6 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:6

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CREATE INDEX plsql101_purchase_salesperson
ON plsql101_purchase(salesperson);

INSERT INTO plsql101_purchase VALUES
('Small Widget', 'CA', '14-JUL-06', 1);

INSERT INTO plsql101_purchase VALUES
('Medium Wodget', 'BB', '14-JUL-06', 75);

INSERT INTO plsql101_purchase VALUES
('Chrome Phoobar', 'GA', '14-JUL-06', 2);

INSERT INTO plsql101_purchase VALUES
('Small Widget', 'GA', '15-JUL-06', 8);

INSERT INTO plsql101_purchase VALUES
('Medium Wodget', 'LB', '15-JUL-06', 20);

INSERT INTO plsql101_purchase VALUES
('Round Chrome Snaphoo', 'CA', '16-JUL-06', 5);

INSERT INTO plsql101_purchase VALUES (
'Small Widget', 'CA', '17-JUL-06', 1)

;

UPDATE plsql101_product
SET product_price = product_price * .9
WHERE product_name NOT IN (

SELECT DISTINCT product_name
FROM plsql101_purchase
)

;

CREATE TABLE plsql101_purchase_archive (
product_name VARCHAR2(25),
salesperson VARCHAR2(3),
purchase_date DATE,
quantity NUMBER(4,2)
)

;

INSERT INTO plsql101_purchase_archive VALUES
('Round Snaphoo', 'BB', '21-JUN-04', 10);

INSERT INTO plsql101_purchase_archive VALUES
('Large Harflinger', 'GA', '22-JUN-04', 50);

INSERT INTO plsql101_purchase_archive VALUES
('Medium Wodget', 'LB', '23-JUN-04', 20);

INSERT INTO plsql101_purchase_archive VALUES
('Small Widget', 'ZZ', '24-JUN-05', 80);

INSERT INTO plsql101_purchase_archive VALUES
('Chrome Phoobar', 'CA', '25-JUN-05', 2);

INSERT INTO plsql101_purchase_archive VALUES
('Small Widget', 'JT', '26-JUN-05', 50);

Chapter 8: Introduction to PL/SQL 7

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:7

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Describe PL/SQL
PL/SQL provides the features that allow you to do sophisticated information processing.
Let’s say that every night you want to transfer the day’s business summary into a day’s
summary table—PL/SQL packages can help you do this. Or, you want to know whether
you need to arrange for extra supplies for purchase orders that are really large—PL/SQL
provides triggers that will notify you as soon as any order placed is found to be larger
than certain limits decided by you. In addition, you can use PL/SQL stored procedures
to compute your employees’ performance to help you decide about bonuses. Plus,
a nice PL/SQL function can calculate the tax withholdings for an employee.

PL/SQL lets you use all the SQL data manipulation, cursor control, and transaction
control commands, as well as all the SQL functions and operators. So, you can
manipulate Oracle data flexibly and safely. Also, PL/SQL fully supports SQL datatypes.
This reduces the need to convert data passed between your applications and the
database. PL/SQL also supports dynamic SQL, an advanced programming technique
that makes your applications more flexible and versatile. Your programs can build
and process SQL data definition, data control, and session control statements
“on the fly” at run time.

Before we proceed to learn more about some of these power tools, I will give you
some idea about how SQL, SQL*Plus®, and PL/SQL relate to each other.

Who’s Who in SQL, SQL*Plus®, and PL/SQL
Think of a restaurant. You go in and hopefully a well-trained waiter or waitress waits
on you. You look through the menu and place an order. The waiter writes down your
order and takes it into the kitchen. The kitchen is huge—there are many chefs and
assistants. You can see a lot of food—cooked, partially cooked, and uncooked—
stored in the kitchen. You can also see people with various jobs: they take the food
in and out of storage, prepare a particular type of food (just soups or just salads, for
instance), and so forth. Depending on what menu items you ordered, the waiter takes
the order to different chefs. Some simple orders are completed by one chef, while more
complex orders may require help from assistants, or even multiple chefs. In addition,
some orders are standard items—a waiter can just tell a chef “mushroom pizza”—
while other orders are custom creations requiring a detailed list of exactly what
ingredients you want.

Now alter this scenario a little. Think of an Oracle database as the restaurant’s
kitchen, with SQL*Plus® serving as the waiter taking our orders—scripts, commands,
or programs—to the kitchen, or database. Inside the kitchen are two main chefs:
SQL and PL/SQL. Like a waiter, SQL*Plus® knows what orders it can process on its
own, as well as what orders to take to specific chefs. In the same way that a waiter
can bring you a glass of water without having to get it from a chef, SQL*Plus® can
adjust the width of the lines shown on its screen without needing to go to the
database.

8 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:8

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The commands or programs you enter and execute at the SQL*Plus® prompt are
somewhat like your special-order pizza. For custom orders the chefs have to do some
thinking each time. Just like the chef has the recipe for cheese pizza stored in his or
her brain, you can have PL/SQL store “recipes” for your favorite orders. These stored
PL/SQL elements are called triggers, stored functions, stored procedures, and packages.
You will learn more about them soon.

As I mentioned earlier, some orders require more than one chef to prepare them.
Most of the interesting and useful database applications you create will have SQL and
PL/SQL working together, passing information back and forth between them to process
a script or program. In a restaurant, after an order is prepared it goes to a waiter to
be taken to your table. Similarly, when SQL and PL/SQL process commands, the results
go to SQL*Plus® (or a custom front-end form) to be displayed to the user.

Stored Procedures, Stored Functions, and Triggers
PL/SQL procedures, functions, and triggers all help you build complex business
logic easily and in a modular fashion (meaning piece by piece, with the pieces
being reusable by other pieces). Storing these in the Oracle server provides two
immediate benefits: they can be used over and over with predictable results, and
they execute very rapidly because server operations involve little or no network
traffic.

Stored Procedures
A stored procedure is a defined set of actions written using the PL/SQL language.
When a procedure is called, it performs the actions it contains. The procedure is
stored in the database, which is the reason it is called a stored procedure.

A stored procedure can execute SQL statements and manipulate data in tables.
It can be called to do its job from within another PL/SQL stored procedure, stored
function, or trigger. A stored procedure can also be called directly from an SQL*Plus®

prompt. As you read through the pages that follow, you will learn how to employ
each of these methods for calling a stored procedure.

A procedure consists of two main parts: the specification and the body. The
procedure specification contains the procedure’s name and a description of its
inputs and outputs. The inputs and outputs we are talking about are called the
procedure’s formal parameters or formal arguments. If a call to a procedure includes
command-line parameters or other inputs, those values are called actual parameters
or actual arguments.

Now let’s take a look at some samples of procedure specifications. (Remember,
the specification doesn’t contain any code; it just names the procedure and defines
any inputs and outputs the procedure can use.)

L 8-2 run_ytd_reports

Chapter 8: Introduction to PL/SQL 9

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:9

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This simple specification contains only the procedure’s name. It has no parameters.

L 8-3 increase_prices (percent_increase NUMBER)

A value can be passed to this procedure when it is called. Within the procedure,
the value will be addressed as PERCENT_INCREASE. Note that the value’s datatype
has been specified: NUMBER.

L 8-4 increase_salary_find_tax (increase_percent IN NUMBER := 7,
sal IN OUT NUMBER,
tax OUT NUMBER
)

Here we have a procedure with three formal parameters. The word IN after a
parameter’s name indicates that the procedure can read an incoming value from
that parameter when the procedure is called. The word OUT after a parameter’s
name indicates that the procedure can use that parameter to send a value back to
whatever called it. Having IN OUT after a parameter’s name says that the parameter
can bring a value into the procedure and also be used to send a value back out.

The INCREASE_PERCENT parameter in this example gets assigned a default value
of 7 by including := 7 after the datatype. Because of this, if the procedure is called
without specifying any increase percentage, it will increase the salary given by 7
percent and calculate the tax based on the new salary.

NOTE
Datatypes in a procedure cannot have size
specifications. For instance, you can specify that
a parameter is a NUMBER datatype, but not a
NUMBER(10,2) datatype.

The procedure body is a block of PL/SQL code, which you will learn about in
the section entitled Structure of a PL/SQL Block.

Stored Functions
A PL/SQL function is similar to a PL/SQL procedure: It has function specification and
a function body. The main difference between a procedure and a function is that a
function is designed to return a value that can be used within a larger SQL statement.

For instance, think for a moment about a function designed to calculate the
percentage difference between two numbers. Ignoring the code that would perform
this calculation, the function specification would look like this:

L 8-5 calc_percent(value_1 NUMBER,
value_2 NUMBER) return NUMBER

10 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:10

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This function accepts two numbers as input, referring to them internally as
VALUE_1 and VALUE_2. Once the body of this function was written, it could be
referred to in an SQL statement in the following way:

L 8-6 INSERT INTO employee VALUES (3000, CALC_PERCENT(300, 3000));

Triggers
A trigger is a PL/SQL procedure that gets executed automatically whenever some
event defined by the trigger—the triggering event—happens. You can write triggers
that fire when an INSERT, UPDATE, or DELETE statement is performed on a table;
when DDL statements are issued; when a user logs on or off; or when the database
starts, encounters an error, or shuts down.

Triggers differ from PL/SQL procedures in three ways:

� You cannot call a trigger from within your code. Triggers are called
automatically by Oracle in response to a predefined event.

� Triggers do not have a parameter list.

� The specification for a trigger contains different information than a
specification for a procedure.

You will learn more about triggers and their uses in Chapter 9.

Stored Procedures and SQL Scripts
While SQL scripts reside on your computer’s hard disk, stored procedures reside within
your Oracle database. An SQL script contains a series of SQL commands that are
executed, one by one, when you invoke the script. In contrast, a stored procedure can
contain flow-control commands allowing it to iterate through a particular section of
code over and over; branch to another code section when particular situations occur;
and respond to error conditions in a way you specify.

Structure of a PL/SQL Block
In this section you will learn about the PL/SQL basic block. Everything in PL/SQL that
actually does work is made up of basic blocks. After learning about the basic blocks,
you will see examples of complete procedures, functions, and triggers.

A PL/SQL basic block is made up of four sections: the header section, an optional
declaration section, the execution section, and the optional exception section.

An anonymous block is a PL/SQL block with no header or name section, hence
the term anonymous block. Anonymous blocks can be run from SQL*Plus® and they
can be used within PL/SQL functions, procedures, and triggers. Recall that PL/SQL
procedures, functions, and triggers are all made up of basic blocks themselves.
What this means is that you can have a basic block within a basic block. Perhaps
the best way to begin to understand a basic block is to examine a sample. First,

Chapter 8: Introduction to PL/SQL 11

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:11

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

type the following command so that information printed by programs can be made
visible in SQL*Plus®:

L 8-7 set serveroutput on

Now try the following sample code to create an anonymous block. Compare your
results with Figure 8-1.

L 8-8 DECLARE
Num_a NUMBER := 6;
Num_b NUMBER;

BEGIN
Num_b := 0;
Num_a := Num_a / Num_b;
Num_b := 7;
dbms_output.put_line(' Value of Num_b ' || Num_b);

EXCEPTION
WHEN ZERO_DIVIDE

THEN
dbms_output.put_line('Trying to divide by zero');
dbms_output.put_line(' Value of Num_a ' || Num_a);
dbms_output.put_line(' Value of Num_b ' || Num_b);

END;
/

12 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:12

FIGURE 8-1. Example of an anonymous PL/SQL block

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Header Section
The header section for a block varies based on what the block is part of. Recall that
procedures, functions, triggers, and anonymous blocks are made up of basic blocks.
In fact, each has one basic block that makes up its body. This body block may contain
more basic blocks inside it. The header for this top-level basic block of a function,
procedure, or trigger is the specification for that function, procedure, or trigger. For
anonymous blocks, the header contains only the keyword DECLARE. For labeled
blocks, the header contains the name of the label enclosed between << and >>,
followed by the keyword DECLARE, as shown in the following code:

L 8-9 <<just_a_label>>
DECLARE

Block labels help make it easier to read code. In a procedure using nested blocks
(blocks inside other blocks), you can refer to an item in a specific block by preceding
the item’s name with the name of the block (for example, block_label.item_label).

Declaration Section
The declaration section is optional. When used, it begins after the header section and
ends at the keyword BEGIN. The declaration section contains the declarations for
PL/SQL variables, constants, cursors, exceptions, functions, and procedures that
will be used by the execution and exception sections of the block. All variable and
constant declarations must come before any function or procedure declarations within
the declaration section. You will learn more about PL/SQL variables and constants
in the following section of the same name (“PL/SQL Variables and Constants”).
A declaration tells PL/SQL to create a variable, constant, cursor, function, or procedure
as specified in the declaration.

The declaration section (beginning with the word DECLARE) in the example shown
in Figure 8-1 tells PL/SQL to create two number type variables called Num_a and
Num_b. It also assigns a value of 6 by default to Num_a.

When a basic block has finished its run, everything declared within the declaration
section stops existing. Things declared within the declaration section of a basic block
can be used only within the same block. Thus, after running the example block in
SQL*Plus® there is no way to pass Num_a to another PL/SQL procedure. Num_a and
Num_b just go out of existence as soon as the block finishes its run. However, if you
call a PL/SQL function or procedure within the execution or exception section of the
block, you can pass Num_a and Num_b to them as actual parameters.

The long and short of the story is, whatever is in the declaration section is the private
property of the block—to be used by and visible only to itself. Thus, what is in the
declaration section of the block only lives as long as the block. In technical terms,
Num_a and Num_b are said to have the scope of the block in which they are declared.
The scope of the block starts at the beginning of the block’s declaration section and
ends at the end of its exception section.

Chapter 8: Introduction to PL/SQL 13

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:13

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Execution Section
The execution section starts with the keyword BEGIN and ends in one of two ways.
If there is an exception section, the execution section ends with the keyword EXCEPTION.
If no exception section is present, the execution section ends with the keyword END,
followed optionally by the name of the function or procedure, and a semicolon. The
execution section contains one or more PL/SQL statements that are executed when the
block is run. The structure for the executable section is shown below:

BEGIN
one or more PL/SQL statements

[exception section]
END [name of function or procedure];

The executable section, in the example block of Figure 8-1, contains three PL/SQL
assignment statements. The assignment statement is the most commonly seen statement
in PL/SQL code. The first statement assigns the value of zero to Num_b. The colon
followed by an equal sign (:=) is the assignment operator. The assignment operator
tells PL/SQL to compute whatever is on its right-hand side and place the result in
whatever is on its left-hand side.

The second statement assigns Num_a the value of Num_a divided by Num_b. Note
that after this statement is executed successfully the value of Num_a will be changed.

The third statement assigns the value of 7 to Num_b.

Exception Section
It is possible that during the execution of PL/SQL statements in the execution section,
an error will be encountered that makes it impossible to proceed with the execution.
These error conditions are called exceptions. The procedure’s user should be informed
when an exception occurs and told why it has occurred. You may want to issue a
useful error to the user or you may want to take some corrective action and retry
whatever the procedure was attempting before the error happened. You may want
to roll back changes done to the database before the error occurred.

For all these situations PL/SQL helps you by providing exception handling
capabilities. Exceptions are so important for good applications that I have a special
section at the end of this chapter where you will learn more about them (see
“Exceptions” within the “Error Handling” section). As an introduction, the following is
the structure for the exception section:

EXCEPTION
WHEN exception_name
THEN

actions to take when this exception occurs
WHEN exception_name
THEN

actions to take when this exception occurs

14 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:14

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The exception section begins at the keyword EXCEPTION and ends at the end of
the block. For each exception there is a WHEN exception_name statement that specifies
what should be done when a specific exception occurs. Our example has three funny-
looking statements that have the effect of making text display on your SQL*Plus®

screen. A little more information is needed to understand what they are doing, but we
will leave the details for Chapter 9. The DBMS_OUTPUT package and PUT_LINE
procedure are part of the Oracle database; together they cause text to display on your
SQL*Plus® screen one line at a time.

All the statements between the statement that causes the exception and the
exception section will be ignored. So, in the case of the example block in Figure 8-1,
the assigning of 7 to Num_b is not executed. You can verify this by looking at the value
for Num_b that the example code prints out.

When a statement in the exception section deals with an exception, we refer to
that action as exception handling.

Detecting that the error occurred and which exception best describes it and then
taking appropriate steps to inform PL/SQL about it so as to make it possible for PL/SQL
to find the exception section for that exception is called raising exception. In the
example code in Figure 8-1, the exception is raised by PL/SQL on its own by detecting
that there is an attempt at division by zero. PL/SQL has a predefined name for this
exception—ZERO_DIVIDE. In many situations the error must be detected by your
code, not by PL/SQL.

Create a Simple PL/SQL Procedure
We have all the ingredients to try writing a complete PL/SQL procedure. You know
about the basic block and you have learned about procedure specifications. Now try
the following code:

L 8-10 CREATE PROCEDURE my_first_proc IS
greetings VARCHAR2(20);

BEGIN
greetings := 'Hello World';
dbms_output.put_line(greetings);

END my_first_proc;
/

The syntax for creating a stored procedure is the following:

CREATE PROCEDURE procedure_specification IS procedure_body

In our sample, the procedure specification is just the name of the procedure,
and the body is everything after it up to the last semicolon. For functions, you will
use the keyword FUNCTION instead of PROCEDURE:

CREATE FUNCTION function_specification IS function_body

Chapter 8: Introduction to PL/SQL 15

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:15

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The forward slash (/) tells SQL*Plus® to go ahead and process the commands
in the program. You can re-create the same procedure or function by changing the
CREATE command to CREATE OR REPLACE. This will destroy the old definition of
the procedure or function and replace it with the new one. If there is no old definition
it will simply create a new one.

CREATE OR REPLACE PROCEDURE procedure_specification
IS procedure_body

Now let us see how this procedure can be called from SQL*Plus®:

L 8-11 set serveroutput on
EXECUTE my_first_proc;

SERVEROUTPUT ON allows you to see the printed output. The EXECUTE
command actually executes the procedure. You can call the procedure from within an
anonymous block as follows. Compare your results with those shown in Figure 8-2.

L 8-12 BEGIN
my_first_proc;

END;
/

Call Procedures and Functions
A procedure or function may or may not have formal parameters with default values.
In fact, it may not have any formal parameters at all. For each case, the way the
procedure or function is called is different. However, the following applies regardless
of the parameters:

� The datatypes for the actual parameters must match or should be convertible
by PL/SQL to the datatypes of corresponding formal parameters.

� Actual parameters must be provided for all formal parameters that do not
have default values.

When calling a function without any parameters, you can just use the name with
or without parentheses, like the following:

procedure_name();
or procedure_name;

The same syntax is used when dealing with a function, except a semicolon will
not be used when the function is called as part of an expression.

16 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:16

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When a procedure has formal parameters with default values and when they
are all at the end of the list of formal parameters in the procedure specification,
the procedure may be called without specifying values for the last few formal
parameters for which default values exist. However, all the formal parameters for
which actual parameters are being supplied at call time must be listed before all
of the formal parameters for which no actual parameters are being supplied. The call
will then look like the following:

procedure_name(actual_param1,
actual_param2,
...
actual_paramN);

N may be less than or equal to the number of formal parameters for the procedure
and N must be greater than or equal to the number of formal parameters for which
default values do not exist.

Chapter 8: Introduction to PL/SQL 17

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:17

FIGURE 8-2. Simple “Hello World” PL/SQL procedure

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When the default-valued formal parameters are not the last parameters in the
specification, or when you wish to avoid having PL/SQL figure out which actual
parameter corresponds to which formal parameter using its order in the list, you can
specifically tell PL/SQL which actual parameter is for which formal parameter using
the following syntax:

procedure_name(formal_param1 => actual_param1,
formal_param2 => actual_param2,
...
)

;

This is called named notation for calling functions and procedures. The earlier
notation is called positional notation as the parameters are matched by their position
in the list.

The same calling methods apply to functions. Functions, however, can appear
within other expressions and may not have any semicolon at the end. You will see
an example for named notation in the next section. It is possible to mix two notations,
but the positional list must precede the notational list in the call.

PL/SQL Variables and Constants
You have seen some examples of PL/SQL variables in previous sections. Now we will
discuss them in greater detail. Variables are essentially containers with name tags.
They can contain or hold information or data of different kinds. Based on the kind
of data they can hold, they have different datatypes and to distinguish them from one
another they have names. Just as oil comes in a bottle and flour in a paper bag, PL/SQL
will store numbers in variables of the NUMBER datatype and text in variables of the
CHAR or VARCHAR2 datatypes. Taking it a step further, imagine the refrigerator in
your company’s break room. It’s filled with brown paper bags that contain your lunch
and the lunches of your co-workers. How will you find your noontime feast amongst
all the other bags? Right! You’d put your name on the bag. Variables are given names,
too, in order to avoid confusion. Further, if your lunch consisted of only bananas you
may eat them and put the peels back into the brown paper bag. Now the contents of
the bag have changed. Similarly, the contents of variables can be changed during the
execution of PL/SQL statements.

Declare PL/SQL Variables
The syntax for declaring a variable in PL/SQL is either of the following:

variable_name data_type [[NOT NULL] := default_value_expression];
variable_name data_type [[NOT NULL] DEFAULT default_value_expression];

18 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:18

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

variable_name is any valid PL/SQL identifier. A valid PL/SQL identifier has the
following properties:

Up to 30 characters long and has no white space of any form in it (as space
or tabs).

� Made up of letters, digits 0 to 9, underscore (_), dollar ($), and pound (#) signs.

� Starts with a letter.

� Is not the same as a PL/SQL or an SQL reserved word, which has special
meaning for PL/SQL or SQL. For example, a variable name cannot be BEGIN.
BEGIN has a special meaning telling PL/SQL that here starts the beginning
of a basic block execution section.

The use of NOT NULL requires that the variable have a value and, if specified,
the variable must be given a default value.

When a variable is created it can be made to have a value specified by the default
value expression. It is just a shorthand way to assign values to variables.

You already know about SQL datatypes—NUMBER, VARCHAR2, and DATE.
PL/SQL shares them with SQL. PL/SQL has additional datatypes that are not in SQL.
For a complete list, please refer to Oracle PL/SQL references.

Declare PL/SQL Constants
The syntax for declaring a constant is the following:

variable_name data_type CONSTANT := constant_value_expression;

Unlike variables, constants must be given a value and that value cannot change
during the life or scope of the constant. Constants are very useful for enforcing safe
and disciplined code development in large and complex applications. For example,
if you want to ensure that the data passed to a PL/SQL procedure is not modified by
the procedure, you can make that data a constant. If the procedure tries to modify it,
PL/SQL will return with an exception.

Assign Values to Variables
There are three ways a variable can get its value changed. First is the assignment of
a valid expression to it using the PL/SQL assignment operator. You have seen a number
of examples of this kind. The syntax is the following:

variable_name := expression ;

Chapter 8: Introduction to PL/SQL 19

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:19

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Second, a variable can be passed as the actual parameter corresponding to
some IN OUT or OUT formal parameter when calling a PL/SQL procedure. After the
procedure is finished the value of the variable may change. The following example
shows the named notation for calling procedures. Refer to Figure 8-3 for the
expected output.

L 8-13 CREATE PROCEDURE hike_prices (old_price NUMBER,
percent_hike NUMBER := 5,
new_price OUT NUMBER)

IS
BEGIN

new_price := old_price + old_price * percent_hike / 100;
END hike_prices;
/

20 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:20

FIGURE 8-3. Assign values to PL/SQL variables by using them as actual
parameters

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The following procedure shows the variables changing their values:

L 8-14 set serveroutput on
DECLARE

price_to_hike NUMBER(6,2) := 20;
hiked_price NUMBER(6,2) := 0;

BEGIN
dbms_output.put_line('Price before hike ' || price_to_hike);
dbms_output.put_line('hiked_price before hike ' || hiked_price);
hike_prices (old_price => price_to_hike,

new_price => hiked_price);
dbms_output.put_line('price_to_hike after hike ' || price_to_hike);
dbms_output.put_line('hiked_price after hike ' || hiked_price);

END;
/

The following is a quick example with Figure 8-4 showing the results:

L 8-15 set serveroutput on
DECLARE
product_quant NUMBER;
BEGIN

SELECT quantity_on_hand
INTO product_quant
FROM plsql101_product
WHERE product_name = 'Small Widget';

dbms_output.put_line ('Small Widget ' || product_quant);
END;
/

product_quant is assigned the value equal to the quantity of small widgets.

Chapter 8: Introduction to PL/SQL 21

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:21

FIGURE 8-4. Assign values to PL/SQL variables using SQL

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Use Variables
Variables are the very basic units of PL/SQL programs. They are used to hold results
of computations, to return values from function calls, as actual parameters for calling
functions and procedures, and so on. Variables should be used to make your
application clean and easy to read, thereby creating a lower maintenance, more
efficient program.

Suppose you want to perform a number of calculations using the current quantity
of small widgets—compare it with the quantity from three months ago, or to the
quantity of medium widgets. By using the variable to hold the value, you avoid the
delay that would come from getting the quantity from the table again and again.

By naming variables in a way that makes sense to you, you can make your code
easy to read and understand. The same principle applies when you use variables to
hold the results of some very complex expressions instead of repeating the expressions
in the code in multiple places.

Control Structures in PL/SQL
Many times you want to do one thing if something is true and something else if it is
not true. For example, if a purchase order exceeds a certain dollar amount you would
like to take 5 percent off the order, and maybe 10 percent off if the order exceeds
some other amount. This kind of logic may be required inside your application that
prints out the final invoice for your customers. This is conditional processing of data.
Based on the condition, different parts of the code need to be executed.

Recall the case where you need to compute income tax for each employee. You
need to complete a function for each employee, such as finding the earnings and filing
status, and then apply the correct formula to find the tax. The correct formula differs
for each employee based on filing status and all of the other factors. This is an example
of an iterative operation.

PL/SQL provides you with the ability to do conditional and iterative processing.
The constructs it provides are said to cause change of program flow and so control
the flow of the execution.

IF Statement
The syntax for an IF statement is as follows:

IF condition_1 THEN
actions_1;

[ELSIF condition_2 THEN
actions_2;]

...
[ELSE

actions_last;]
END IF;

22 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:22

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

actions_1 to actions_last represent one or more PL/SQL statements. Each set of
statements gets executed only if its corresponding condition is true. When one of the
IF conditions is determined to be true, the rest of the conditions are not checked.

Enter the following example and see that your results match those of Figure 8-5:

L 8-16 -- Compute discounts on orders.
-- Input order amount. Returns discount amount (zero for wrong inputs).
CREATE FUNCTION compute_discounts (order_amt NUMBER)
RETURN NUMBER IS

small_order_amt NUMBER := 400;
large_order_amt NUMBER := 1000;
small_disct NUMBER := 1;
large_disct NUMBER := 5;

BEGIN
IF (order_amt < large_order_amt

AND
order_amt >= small_order_amt)

THEN
RETURN (order_amt * small_disct / 100);

ELSIF (order_amt >= large_order_amt)
THEN

RETURN (order_amt * large_disct / 100);
ELSE

RETURN(0);
END IF;

END compute_discounts;
/

This function will give a 1 percent discount for orders between 400 and 1000
and a 5 percent discount on orders above 1000. It will return zero for all other amounts
including wrong values. For example, someone may try to use a negative value for
order_amt, which is meaningless.

Observe at the start how the function is clearly documented. You should always
consider all possibilities when writing your code and either clearly state in your
documentation what you are going to do about error conditions or, if the conditions
are severe enough, give appropriate error messages. Suppose in our case—however
unimaginable it is—that this function may be called with a negative value for the
order_amt, we have documented what the function will do in such a case.

You can test the function by calling it in an anonymous block. Be sure you have
serveroutput on. Refer once again to Figure 8-5 for this example.

L 8-17 set serveroutput on
DECLARE

tiny NUMBER := 20;
med NUMBER := 600;
big NUMBER := 4550;
wrong NUMBER := -35;

BEGIN
dbms_output.put_line (' Order AND Discount ');

Chapter 8: Introduction to PL/SQL 23

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:23

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

dbms_output.put_line (tiny || ' ' || compute_discounts(tiny));
dbms_output.put_line (med || ' ' || compute_discounts (med));
dbms_output.put_line (big || ' ' || compute_discounts (big));
dbms_output.put_line (wrong || ' ' || compute_discounts (wrong));

END;
/

24 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:24

FIGURE 8-5. Example of an IF statement

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Loops
PL/SQL provides three different iteration constructs. Each allows you to repeatedly
execute a set of PL/SQL statements. You stop the repeated executions based on some
condition.

LOOP
The syntax for the LOOP construct is as follows:

<<loop_name>>
LOOP

statements;
EXIT loop_name [WHEN exit_condition_expression];
statements;

END LOOP ;

All the statements within the loop are executed repeatedly. During each repetition
or iteration of the loop, the exit condition expression is checked for a positive value if
the WHEN condition is present. If the expression is true, then the execution skips all
statements following the EXIT and jumps to the first statement after END LOOP within
the code. No more iterations are done. If the WHEN condition is not present, the effect
is to execute statements between LOOP and EXIT only once. You will obviously be
doing something illogical if you are not using the WHEN condition. After all, the idea
of a loop is to potentially loop through the code.

Try out the following loop example and compare the results with Figure 8-6.
It simply prints out the first ten numbers.

As usual, do not forget to set serveroutput on to see the output.

L 8-18 set serveroutput on
DECLARE

just_a_num NUMBER := 1;
BEGIN

<<just_a_loop>>
LOOP

dbms_output.put_line(just_a_num);
EXIT just_a_loop
WHEN (just_a_num >= 10);

just_a_num := just_a_num + 1;
END LOOP;

END;
/

Each iteration increments the variable just_a_num by 1. When 10 is reached,
the exit condition is satisfied and the loop is exited.

Chapter 8: Introduction to PL/SQL 25

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:25

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

WHILE Loop
Another type of loop is the WHILE loop. A WHILE loop is well suited for situations
when the number of loop iterations is not known in advance, but rather is determined
by some external factor. The syntax for a WHILE loop is as follows:

WHILE while_condition_expression
LOOP

statements;
END LOOP;

Practice creating a WHILE loop by entering the following code. Your results
should match those of Figure 8-7.

L 8-19 set serveroutput on
DECLARE

just_a_num NUMBER := 1;

26 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:26

FIGURE 8-6. Example of a simple LOOP

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

BEGIN
WHILE (just_a_num <= 10) LOOP

dbms_output.put_line(just_a_num);
just_a_num := just_a_num + 1;

END LOOP;
END;
/

NOTE
The condition for the WHILE must be true every time
before entering the loop.

FOR Loop
The FOR loop uses a counter variable, also called a loop index, to count the number
of iterations. The counter is incremented, starting from the lower limit specified, or
decremented, starting from the upper limit specified, at the end of each iteration or loop.
If it is out of the range, the looping stops. The syntax for the FOR loop is as follows:

FOR counter IN [REVERSE] lower_bound .. upper_bound
LOOP

statements;
END LOOP;

Chapter 8: Introduction to PL/SQL 27

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:27

FIGURE 8-7. Example of a WHILE loop

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Now create your first FOR loop using the following code. Your results should
match those of Figure 8-8.

L 8-20 set serveroutput on
BEGIN

FOR just_a_num IN 1..10
LOOP

dbms_output.put_line(just_a_num);
END LOOP;

END;
/

Now for fun and experience, try using the REVERSE command in your FOR loop.
Your results should show the numbers in reverse order from 10 to 1.

Cursors
The cursor is an extremely important PL/SQL construct. It is the heart of PL/SQL
and SQL cooperation and stands for “current set of records.” A cursor is a special
PL/SQL element that has an associated SQL SELECT statement. Using a cursor,

28 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:28

FIGURE 8-8. Example of a FOR loop

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

each row of the SQL statement associated with the cursor can be processed one at
a time. A cursor is declared in the declaration section of a basic block. A cursor is
opened using the command OPEN and rows can be fetched using the command
FETCH. After all processing is done, the cursor is closed using the CLOSE command.
Closing the cursor releases all of the system resources that were used while the cursor
was open. You can lock the rows selected by a cursor to prevent other people from
modifying them while you are using them. Closing the cursor or executing an explicit
COMMIT or ROLLBACK will unlock the rows.

PL/SQL uses hidden or implicit cursors for SQL statements within PL/SQL code.
We discuss them more in Chapter 9. In this section we will focus on explicit cursors,
which simply means cursors that have been assigned a name.

We will write a simple procedure that uses a cursor to compute the commissions
for all salespersons. Before we do that, however, take a look at the syntax for an
explicit cursor.

Cursor Declaration and Cursor Attributes
A cursor is declared within a PL/SQL procedure in the following manner:

CURSOR cursor_name [([parameter1 [, parameter2 ...])]
[RETURN return_specification]
IS

select_statement
[FOR UPDATE

[OF table_or_col1
[, table_or_col2 ...]

]
]

;

The parameters are similar to procedure parameters, but they are all IN parameters.
They cannot be OUT or IN OUT because the cursor cannot modify them. The
parameters are used in the WHERE clause of the cursor SELECT statement. The return
specification tells what type of records will be selected by the SELECT statement.
You will learn more about PL/SQL records in Chapter 9. The table_or_col is a column
name you intend to update or a table name from which you intend to delete or update
rows; it must be taken from the names of tables and columns used within the cursor
SELECT statement. It is used to clearly document what may potentially be modified
by the code that uses this cursor. The FOR UPDATE commands lock the rows selected
by the SELECT statement when the cursor is opened, and they remain locked until you
close the cursor in the ways already discussed.

A cursor has some indicators to show its state and they are called attributes of
the cursor. The attributes are shown in Table 8-1.

Chapter 8: Introduction to PL/SQL 29

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:29

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

PL/SQL Records
Although PL/SQL records will be discussed in greater detail in Chapter 9, you’ll need
to know a little something about them before we proceed. So let’s start with a brief
introduction in this chapter.

A PL/SQL record is a collection of basic types of data and can be accessed as a
single unit. You access the individual fields of the record using the record_name.field_
name notation you are already familiar with for use with table columns. Records are
of three types and you can declare variables of record types. The three types of records
are the following:

� Table-Based This record has fields that match the names and types of the
table columns. So if a cursor selects the entire row—by using SELECT* from
some_table, for example—the records it returns can be directly copied into
the variable of the table-based record type for some_table.

� Cursor-Based This record has fields that match in name, datatype, and order
to the final list of columns in the cursor’s SELECT statement.

� Programmer-Defined These are records in which you define a record type.

Use OPEN, FETCH, and CLOSE Cursor
The following is the syntax for opening, fetching from, and closing a cursor:

OPEN cursor_name;
FETCH cursor_name INTO record_var_or_list_of_var;
CLOSE cursor_name;

30 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:30

Attribute Description

cursor_name%ISOPEN Checks if the cursor is open. It returns TRUE if the
cursor cursor_name is already open.

cursor_name%ROWCOUNT The number of table rows returned by the cursor
SELECT statement.

cursor_name%FOUND Checks whether the last attempt to get a record
from the cursor succeeded. It returns TRUE if a
record was fetched.

cursor_name%NOTFOUND Opposite of the FOUND attribute. It returns TRUE
when no more records are found.

TABLE 8-1. Cursor Attributes

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When opened, a cursor contains a set of records if the cursor’s SELECT statement
was successful and resulted in fetching selected rows from the database. Each FETCH
then removes a record from the open cursor and moves the record’s contents into
either a PL/SQL variable—of a record type that matches the record type of the cursor
record—or into a different set of PL/SQL variables such that each variable in the list
matches in type with the corresponding field in the cursor record.

You will check if there are any more records left in the cursor before trying to
fetch one from the cursor using the FOUND and NOTFOUND attributes of the
cursor. Fetching from an empty cursor will fetch the last fetched record over and
over again and will not give you any error. So make sure you use FOUND or
NOTFOUND if you are using FETCH.

The actual processing of records from a cursor usually occurs within a loop.
When writing the loop, it’s a good idea to start by checking whether a record has
been found in the cursor. If so, the code proceeds to perform whatever processing
you need; if not, the code exits from the loop. There is a more compact way to do
the same where PL/SQL takes care of opening, fetching, and closing without your
needing to do it—the cursor FOR loop.

Cursor FOR Loop
The syntax for the cursor FOR loop is the following:

FOR cursor_record IN cursor_name LOOP
statements;

END LOOP;

This cursor FOR loop continues fetching records from the cursor into the cursor_
record record type variable. You can use cursor_record fields to access the data within
your PL/SQL statements in the loop. When all the records are done, the loop ends.
The cursor is automatically opened and closed for your convenience by PL/SQL.

You will receive an invalid cursor message if you try to fetch from a cursor that
is not open. If you do not close cursors, you may end up eventually running into the
maximum number of open cursors that the system allows.

WHERE CURRENT OF
When the cursor is opened in order to update or delete the rows it selects, you can use

WHERE CURRENT OF cursor_name

to access the table and row corresponding to the most recently fetched record in the
WHERE clause of the UPDATE or DELETE statement. For example, to reduce the prices
in the PLSQL101_PRODUCT table by 3 percent, type the following code and check
your results against those in Figure 8-9.

Chapter 8: Introduction to PL/SQL 31

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:31

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

L 8-21 SELECT product_name, product_price
FROM plsql101_product;

DECLARE
CURSOR product_cur IS

32 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:32

FIGURE 8-9. Examples of a cursor FOR loop and WHERE CURRENT OF clause

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SELECT * FROM plsql101_product
FOR UPDATE OF product_price;

BEGIN
FOR product_rec IN product_cur
LOOP

UPDATE plsql101_product
SET product_price = (product_rec.product_price * 0.97)
WHERE CURRENT OF product_cur;

END LOOP;
END;
/

SELECT product_name, product_price
FROM plsql101_product;

Nested Loops and Cursor Example
The following code demonstrates complete use of cursors and loops within loops
or nested loops. Enter the following code:

L 8-22 -- This procedure computes the commissions for salespersons.
-- It prints out the salesperson's code, his or her total sales,
-- and corresponding commission.
-- No inputs. No errors are reported and no exceptions are raised.
/* Logic: A cursor to create a join between PLSQL101_PRODUCT and
PLSQL101_PURCHASE on PRODUCT_NAME column is done.
The result is ordered by salesperson.
Outer loop starts with a new salesperson and inner loop
processes all rows for one salesperson.
*/
CREATE OR REPLACE PROCEDURE do_commissions IS

commission_rate NUMBER := 2 ;
total_sale NUMBER := 0 ;
current_person CHAR(3) := ' ' ;
next_person CHAR(3) ;
quantity_sold NUMBER := 0 ;
item_price NUMBER := 0 ;
CURSOR sales_cur IS

SELECT purc.salesperson,
purc.quantity,
prod.product_price

FROM plsql101_purchase purc,
plsql101_product prod

WHERE purc.product_name = prod.product_name
ORDER BY salesperson;

BEGIN
OPEN sales_cur;

Chapter 8: Introduction to PL/SQL 33

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:33

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

LOOP
FETCH sales_cur INTO

next_person, quantity_sold, item_price;
WHILE (next_person = current_person

AND
sales_cur%FOUND)

LOOP
total_sale :=

total_sale + (quantity_sold * item_price);
FETCH sales_cur INTO

next_person, quantity_sold, item_price;
END LOOP;
IF (sales_cur%FOUND)
THEN

IF (current_person != next_person)
THEN

IF (current_person != ' ')
THEN

dbms_output.put_line
(current_person ||
' ' ||
total_sale ||
' ' ||
total_sale * commission_rate / 100);

END IF;
total_sale := quantity_sold * item_price;
current_person := next_person;

END IF;
ELSE IF (current_person != ' ')
THEN

dbms_output.put_line(current_person ||
' ' ||
total_sale ||
' ' ||
total_sale * commission_rate / 100);

END IF;
END IF;
EXIT WHEN sales_cur%NOTFOUND;
END LOOP;
CLOSE sales_cur;

END do_commissions;
/

First look at the cursor’s SELECT statement. It lists, from the PLSQL101_PURCHASE
table, the quantities of items sold. It also shows their corresponding prices from the
PLSQL101_PRODUCT table. This is achieved by creating a join. The result is ordered
by salesperson so that we have all of the records for a particular salesperson together.

34 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:34

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Once the cursor is opened and the first row is fetched, the condition for WHILE
is checked. The first FETCH command for the current person has a value that cannot
match any salesperson code; recall that its default value is a single space (). Therefore,
the loop is skipped and we jump to the first IF statement. The IF statement checks to see
if the last FETCH command returned any records. If records were returned, a check
is made to see whether the current_person and next_person values match. If they don’t
match, we know that the last FETCH is the start of a new salesperson and it is time to
print out the commissions for the current salesperson. Note that the first record for
current_person is not valid; therefore, the IF check will fail and nothing will print.

The next statement sets the value for total_sale to be equal to the cost for the
very first product. The statement after that stores the next_person value into the
current_person variable. Now we will be back to the first FETCH in the loop as
the loop’s EXIT condition is not yet true. This FETCH may result in the same value
for next_person as the current_person, in which case we have more than one entry for
the current person in our list of sales. When that is the case, the WHILE loop is entered
and the cost for items is added to the total sale amount. This loop will keep adding
costs by fetching new records from the cursor until a new salesperson is identified.
This process repeats over and over until there are no records left in the cursor. At that
point, the validity of the current_person is checked. If the current_person is valid, then
the very last IF statement prints out sales and commissions for that person; the
commissions are calculated using the value in the commission_rate constant.

To test the procedure, enter the following commands and compare your results
with those in Figure 8-10. The first command shows the raw records in the PLSQL101_
PURCHASE table, while the second command causes the DO_COMMISSIONS
procedure to subtotal the sales in those records and calculate appropriate commissions
for each salesperson.

L 8-23 SELECT purc.salesperson,
purc.quantity,
prod.product_price

FROM plsql101_purchase purc,
plsql101_product prod

WHERE purc.product_name = prod.product_name
ORDER BY salesperson;

set serveroutput on
EXECUTE do_commissions;

Error Handling
It is important to issue user-friendly error messages when error conditions occur.
Earlier in this chapter, the section on basic PL/SQL blocks included a mention of
exceptions; now it is time to get into more detail.

Chapter 8: Introduction to PL/SQL 35

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:35

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Exceptions
An exception is an error state that is activated—or raised—when a specific problem
occurs. There are many different exceptions, each relating to a different type of problem.
When an exception is raised, the code execution stops at the statement that raised
the exception, and control is passed to the exception-handling portion of the block.
If the block does not contain an executable section, PL/SQL tries to find an executable
section in the enclosing basic block, which is an outer block of code surrounding the
block in which the exception was raised. If the immediate enclosing block does not
have an exception handler to accommodate the raised exception, then the search
continues to the next enclosing block and so on until a proper exception handler is
found or, if not found, execution is halted with an unhandled exception error.

The exception-handling portion of a block is the perfect opportunity to issue
meaningful error messages and clean up anything that could cause confusion or trouble
later. A typical cleanup could involve issuing the ROLLBACK statement if an exception
is raised during a procedure that has inserted rows into a table.

36 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:36

FIGURE 8-10. Example of nested loops

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Once control is passed to the exception handler, control is not returned to the
statement that caused the exception. Instead, control is passed to the enclosing basic
block at the point just after the enclosed block or procedure/function was called.

System-Defined Exceptions
You are familiar with the ZERO_DIVIDE exception predefined by PL/SQL. There are
quite a few other system-defined exceptions that are detected and raised by PL/SQL
or Oracle. Table 8-2 provides a more complete list of system-defined exceptions.

Chapter 8: Introduction to PL/SQL 37

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:37

System-Defined Exception Description

CURSOR_ALREADY_OPEN Tried to open an already open cursor.

DUP_VAL_ON_INDEX Attempted to insert duplicate value in column
restricted by unique index to be unique.

INVALID_CURSOR Tried to FETCH from cursor that was not open or
tried to close a cursor that was not open.

NO_DATA_FOUND Tried to SELECT INTO when the SELECT returns no
rows (as well as other conditions that are outside the
scope of this book).

PROGRAM_ERROR Internal error. Usually means you need to contact
Oracle support.

STORAGE_ERROR Program ran out of system memory.

TIME_OUT_ON_RESOURCE Program waited too long for some resource to be
available.

TOO_MANY_ROWS SELECT INTO in PL/SQL returns more than one row.

VALUE_ERROR PL/SQL encountered invalid data conversions,
truncations, or constraints on data.

ZERO_DIVIDE Attempt at division by zero.

OTHERS All other exceptions or internal errors not covered
by the exceptions defined in the basic block. Used
when you are not sure which named exception you
are handling, but you do want to handle whichever
exception was raised.

TABLE 8-2. System-Defined Exceptions

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

PL/SQL has two ways of showing information to a user about an error. One option
is the use of the command SQLCODE, which returns the error code. An error code is
a negative value that usually equals the value of the corresponding ORA error that
would be issued if the exception remains unhandled when an application terminates.
The other option returns a text message regarding the error. Not surprisingly, this
command is SQLERRM. You can use both SQLCODE and SQLERRM in the exception
handler. Note: not all system-defined exceptions are named.

Now try the previous example again, but this time use SQLCODE and SQLERRM.
Enter the following code and compare your results with those shown in Figure 8-11.

L 8-24 set serveroutput on
DECLARE

Num_a NUMBER := 6;
Num_b NUMBER;

BEGIN
Num_b := 0;
Num_a := Num_a / Num_b;
Num_b := 7;
dbms_output.put_line(' Value of Num_b ' || Num_b);

EXCEPTION
WHEN ZERO_DIVIDE THEN

DECLARE
err_num NUMBER := SQLCODE;
err_msg VARCHAR2(512) := SQLERRM;

BEGIN
dbms_output.put_line('ORA Error Number ' || err_num);
dbms_output.put_line('ORA Error message ' || err_msg);
dbms_output.put_line(' Value of Num_a is ' || Num_a);
dbms_output.put_line(' Value of Num_b is ' || Num_b);

END;
END;
/

Programmer-Defined Exceptions
One handy feature of PL/SQL is that it allows you to create your own exception
conditions and names. When raising and handling your own exceptions, they must
be named and declared just like any other PL/SQL entity.

Here is a complete example of how to name and define your own exception. Enter
the following code and compare your results with those shown in Figure 8-12:

L 8-25 set serveroutput on
DECLARE

quantity1 NUMBER := -2;
quantity2 NUMBER := 3;
total NUMBER := 0;
quantity_must_positive EXCEPTION;
FUNCTION find_cost (quant NUMBER) RETURN NUMBER IS

38 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:38

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

BEGIN
IF (quant > 0)
THEN

RETURN(quant * 20);
ELSE

RAISE quantity_must_positive;
END IF;

END find_cost;
BEGIN

total := find_cost (quantity2);
total := total + find_cost(quantity1);

EXCEPTION
WHEN quantity_must_positive
THEN

dbms_output.put_line('Total until now: ' || total);
dbms_output.put_line('Tried to use negative quantity ');

END;
/

Chapter 8: Introduction to PL/SQL 39

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:39

FIGURE 8-11. Using SQLCODE and SQLERRM for system-defined exceptions

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The exception is declared in the declaration section. Just like any other PL/SQL
variable declared there, the life of the exception is valid only for this block. Since
find_cost is also in this block, or is enclosed by this block, it can use the exception
name. If the same function was defined as, say, a stored function, then you could
not use the same exception name.

You can use your own exceptions for application-specific exception conditions
that otherwise cannot be detected by the system or have no meaning for the
system. For example, the system does not know that quantities ordered must be
positive integer values. Your application should know this, however, and you can
enforce it by catching values that are not positive integers as an exception while
doing computations based on quantities. This is a very simple example, but you
can imagine and will certainly come across more complex cases in real-life
applications.

40 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:40

FIGURE 8-12. Programmer-defined exception

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Summary
This chapter served as an introduction to the wonderful world of PL/SQL—a powerful
programming language that works hand in hand with SQL. We explored PL/SQL
variables. PL/SQL variables are used to hold the results of computations and to carry
those results from one computation task to another.

We discussed the aspects of the PL/SQL basic block. All PL/SQL program units
are made up of one or more basic blocks. A basic block is made up of header,
declaration, execution, and exception sections. The header section contains identifying
information for the block. For anonymous blocks, the header section is empty. The
declaration section contains declarations for variables, constants, exceptions, cursors,
functions, and procedures to be used within the block’s execution and exception
sections; if none of these are used, the declaration section will be empty. The execution
section contains PL/SQL executable statements. The execution section is not optional
and must be present to form a block. The exception section is used to handle error,
or exception, conditions occurring within the execution section. This includes
exceptions that may not be handled within any enclosed or nested blocks and within
functions or procedures called.

We discussed how to create and call functions and procedures. You learned the
meaning and use of formal and actual parameters.

Recall that PL/SQL program flow control constructs allow you to conditionally
execute a piece of code once or repeatedly. The IF statement allows conditional
execution once. The LOOP, WHILE loop, and FOR loop allow for repeated execution
of the same set of statements. Cursors are the means for PL/SQL to communicate with
SQL and hence the database. The cursor FOR loop allows you to process rows of
tables one at a time.

Finally, you learned how to define your own exceptions and to raise or handle
them by issuing friendly error messages. Another option is to remove what’s causing
the error and try again to create a successful program.

We have covered a lot of ground in this chapter and it has been the foundation
for Chapter 9. You are probably eager to play with PL/SQL’s powerful features. Have
some fun, and then jump right into the next chapter.

Chapter Questions
1. Which of the following are true about PL/SQL procedures and functions?

A. There is no difference between the two.

B. A function has a return type in its specification and must return a value
specified in that type. A procedure does not have a return type in its
specification and should not return any value, but it can have a return
statement that simply stops its execution and returns to the caller.

Chapter 8: Introduction to PL/SQL 41

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:41

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C. Both may have formal parameters of OUT or IN OUT modes, but a
function should not have OUT or IN OUT mode parameters.

D. Both can be used in a WHERE clause of a SQL SELECT statement.

2. Which is the correct output for a run of the following code sample?

<<outer_block>>

DECLARE

scope_num NUMBER := 3;

BEGIN

DECLARE

scope_num NUMBER := 6;

Num_a NUMBER := outer_block.scope_num;

BEGIN

dbms_output.put_line(scope_num);

dbms_output.put_line(Num_a);

END;

dbms_output.put_line(scope_num);

END;

A. 6 3 3

B. Gives error saying duplicate declaration and aborts execution

C. 3 3 3

D. 6 3 6

3. Which of the following is true about IF statements?

A. At most, one set of executable statements gets executed corresponding
to the condition that is TRUE. All other statements are not executed.

B. It depends. Sometimes more than one set of statements gets executed as
multiple conditions may be TRUE and then statements for each of them
should get executed.

4. Which of the following LOOPs will be entered at least once?

A. Simple LOOP

B. WHILE loop

C. FOR loop

D. Cursor FOR loop

42 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:42

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5. Which one of the following is not true about exceptions?

A. Exceptions raised within the declaration section are to be handled in
the enclosing block, if you want to handle them.

B. Statements in the execution section just after the statement responsible
for raising exceptions are executed once the exception handler has
finished execution.

C. When the system raises exceptions and they are not handled by the
programmer, all the committed changes made to database objects—
like tables by the execution section within which the exception occurred—
are not automatically rolled back by the system.

D. Exceptions raised within a called procedure not handled by the procedure
will roll back the changes done to IN OUT or OUT parameters by the
procedure before the exception occurred.

Answers to Chapter Questions
1. B, C. A function has a return type in its specification and must return a

value specified in that type. A procedure does not have a return type in
its specification and should not return any value, but it can have a return
statement that simply stops its execution and returns to the caller.
Both may have formal parameters of OUT or IN OUT modes, but a function
should not have OUT or IN OUT mode parameters.

Explanation A is certainly not true. D is false because procedures do not return
values whereas functions do by utilizing the WHERE clause. Functions compute
and return a single value, but do not modify its inputs so C is true. B is true as a
matter of PL/SQL legal syntax.

2. A. 6 3 3

Explanation This is an example of scope. The outer block scope_num is overridden
inside the inner block by its own scope_num. Thus the value for scope_num inside
the inner block is 6. This inner scope_num is not visible to the outer block so once the
inner block has run, the scope_num used is the outer scope_num resulting in the last
value of 3. To get at the outer scope_num, we use the label name inside the inner
block while assigning value to Num_a.

Chapter 8: Introduction to PL/SQL 43

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:43

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3. A. At most, one set of executable statements gets executed corresponding
to the condition that is TRUE. All other statements are not executed.

Explanation The IF, ELSE, and ELSIF constrain the execution so that the conditions
are mutually exclusive. Only one statement can be true. When no statements are true,
no statements are executed.

4. A. Simple LOOP

Explanation The simple LOOP checks the condition for exiting the loop inside the
loop body so it must get inside at least once. All other loops check the condition before
entering the loop.

5. B. Statements in the execution section just after the statement responsible
for raising exceptions are executed once the exception handler has finished
execution.

Explanation If not handled, exceptions will abort the execution of the execution
section and return control to the enclosing block. Therefore, the statements in the
culprit execution section after the statement that raises exception will not be executed.
All other choices are true.

44 Oracle Database 10g PL/SQL 101

ORACLE Series / Oracle Database 10g PL/SQL 101 / Allen / 225540-4 / Chapter 8
Blind Folio 8:44

P:\010Comp\Oracle8\540-4\ch08.vp
July 16, 2004 2:37:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

